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Abstract: This meta-survey provides a comprehensive review of 3D point cloud (PC) appli-
cations in remote sensing (RS), essential datasets available for research and development
purposes, and state-of-the-art point cloud compression methods. It offers a comprehensive
exploration of the diverse applications of point clouds in remote sensing, including special-
ized tasks within the field, precision agriculture-focused applications, and broader general
uses. Furthermore, datasets that are commonly used in remote-sensing-related research
and development tasks are surveyed, including urban, outdoor, and indoor environment
datasets; vehicle-related datasets; object datasets; agriculture-related datasets; and other
more specialized datasets. Due to their importance in practical applications, this article also
surveys point cloud compression technologies from widely used tree- and projection-based
methods to more recent deep learning (DL)-based technologies. This study synthesizes in-
sights from previous reviews and original research to identify emerging trends, challenges,
and opportunities, serving as a valuable resource for advancing the use of point clouds in
remote sensing.

Keywords: point cloud; remote sensing; point cloud datasets; point cloud compression

1. Introduction
Three-dimensional point clouds (PCs) have always attracted substantial attention in

remote sensing (RS) because of their ability to accurately represent complex 3D structures
and surfaces. Typically, point clouds are represented as a set of distinct points in a three-
dimensional space (so-called geometric information), possibly with one or more attribute
components per point, such as color, reflectance, temperature, or other variables of interest.
PC data are often obtained using advanced sensing technologies such as light detection
and ranging (LiDAR), photogrammetry, radio detection and ranging (RADAR), synthetic
aperture RADAR (SAR), sound detection and ranging (SONAR), and other 3D scanning
methods. These types of data are very important and widely used in remote sensing
applications such as environmental monitoring, urban planning, forestry, and disaster
management, as they provide precise spatial information regarding an object’s location and
dimensions, as well as terrain topography.

The need for solving problems related to the efficient storage, transmission, and
processing of such massive datasets has increased, along with the usage of point cloud
data in remote sensing. Point clouds, which are sometimes highly detailed, tend to involve
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enormous amounts of data, which makes their handling and use challenging. To address
this problem, efficient point cloud data compression has emerged as an important research
area, and various methodologies have been proposed to reduce point cloud data size while
preserving geometric accuracy and attribute representation fidelity. Newer compression
methodologies based on deep learning (DL) are of special interest as they are a fast-evolving
alternative to earlier non-DL compression approaches.

This article is organized into three main sections, describing different aspects of PC
applications in RS:

• Section 2: A meta-survey of RS-related PC applications;
• Section 3: PC datasets for RS-related tasks;
• Section 4: PC compression methodologies.

Section 2 provides a review of articles that describes the different PC applications
in RS explored in this study. The surveyed articles are organized into three subsections:
general PC-related, specific RS-related, and agriculture-related applications. Next, Section 3
introduces several PC datasets used in research and algorithmic development, classified
into six categories: urban scenes, outdoor- and vehicle-related contexts, indoor scenarios,
small-size and medium-size object representation, agriculture-related contexts, and other
application-specific datasets. Section 4 covers different PC compression methods, and they
are divided into several categories: common tree-based point cloud compression, projection-
based point cloud compression; voxelized or octree-based static or dynamic PC geometry
compression; point-based point cloud compression; attribute compression; emerging neural
radiance field (NeRF)-based PC compression; and other point cloud compression methods
and point cloud compression applications. Finally, Section 5 presents conclusions and
future research.

2. Point Cloud Applications in Remote Sensing
The following paragraphs present a review of survey articles that describe the appli-

cations of PCs in RS activities. A total of 59 survey articles published in several journals
in the past 10 years were selected for review using the Scopus database, with the key-
words “point cloud” and “remote sensing” applied. Some articles that are not surveys but
present original research results were included due to their importance and relevance to
this meta-survey.

We also present some information about keyword occurrences and the co-occurrence
frequency of the surveyed papers. We used VOSviewer [1] to prepare the keyword oc-
currence graph shown in Figure 1. We used at least five occurrences (common keywords)
from all reviews, except for the “compression” keyword (with four occurrences); combined
words with similar meaning; removed the word “review”; and graphically represented the
relationships between the 27 selected keywords. Figure 1 illustrates the topics frequently
analyzed alongside the searched keywords “point cloud” and “remote sensing”. This
visualization highlights the relationships between various themes and concepts, listing the
areas of research and application commonly associated with these keywords.

It can be concluded that the composite keyword "point cloud" belongs to the same
(green) cluster as the 12 keywords: classification, compression, computer vision, dataset,
deep learning, image segmentation, learning systems, machine learning, satellite im-
agery, segmentation, semantic segmentation, and semantics. Similarly, the composite
keyword “remote sensing”, which belongs to the red cluster, is associated with 13 keywords:
3D computer graphics, 3D modeling, airborne laser scanner, antennas, data acquisition,
data handling, extraction, forestry, laser applications, laser scanning, LiDAR, mapping,
and photogrammetry.
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The keyword “dataset”, with five occurrences, discussed in Section 3, is linked to
multiple terms across both clusters. In the green cluster, it connects to computer vision,
deep learning, and machine learning, among others, while in the red cluster, it is associated
with 3D modeling, LiDAR, and remote sensing.

The keyword “compression”, with four occurrences, discussed in Section 4, is associ-
ated with five keywords from the green cluster—classification, deep learning, point cloud,
semantics, and semantic segmentation—and two keywords from the red cluster: remote
sensing and LiDAR. It can be observed that compression analysis has received relatively
limited attention in review articles focusing on PCs in RS. Therefore, PC compression
algorithms will also be reviewed in depth in Section 4.

Figure 1. VOSviewer results, using at least 5 overlapping keywords (except compression keyword)
from 59 review articles described earlier in the section, showing a total of 27 keywords. Line width
represents the normalized strength of the link between two keywords, i.e., the number of joint
keywords from analyzed papers. Circle size represents the weight of the specific keyword, i.e., the
number of occurrences in analyzed papers. Different colors are used to represent keyword clustering
(two clusters in this case). For more information, consult the observations in [1].

The following subsections discuss several applications, categorized into three groups
according to the selected review articles, as shown in Figure 2: general PC-related, specific
RS-related, and agriculture-related applications.

Additional research discussing other aspects of the capture and use of PC are reported
by the authors of [2], who address data acquisition technologies, intelligent processing
algorithms, and their applications in RS in scientific and engineering contexts. Newer
collections of research also include two editorials, with the authors of [3] focusing on
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intelligent PC processing, sensing, and understanding and the authors of [4] exploring
PC processing with machine learning techniques. A noteworthy source of information is
provided by the authors of [5], who introduce advanced theories and methodologies for
AI-driven PC processing, with applications to earth observation, 3D vision, autonomous
driving, smart cities, and geospatial information systems.

General analysis and processing of RS data 

PC applications in RS (59)

General PC-related 
applications (19) 

RS applications of scene understanding 
3D mesh processing 
PC registration 
Multispectral RS data 

RS-specific PC
applications (22) 

PCs to urban model reconstruction and 
building information modeling (BIM) 
Road detection and extraction in RS 
Power line modeling 
Urban object change detection 
Structural damage mapping 
Shoreline mapping 
Landslide detection 
PC segmentation of discontinuous plane surfaces 
PC semantic segmentation for specific RS-related tasks 
RS and other data analysis in space 
RS and other data analysis in water 
Virtual reality/augmented reality for RS applications 

Agriculture-related
applications (18) 

General use 
Forestry 
Vegetation parameter extraction 
Viticulture 
Weed management 

PC applications in RS (59) 

Figure 2. Map of discussed point cloud applications in remote sensing.

2.1. General Point Cloud-Related Applications

This subsection summarizes different review papers focused on the general appli-
cations of PC to RS tasks. The studies surveyed are listed in Table 1, which provides
information about the year of publication, type of platform used in the work (ground-
based, aerial, etc.) and type of application.

Table 1. Summary of recently published review papers describing general PC processing for RS tasks:
MS/HS—multispectral/hyperspectral; SS—semantic segmentation; RGB-D—depth generated from
stereo/multiview structure-from-motion (SfM) or depth cameras.

Application Short Description Scanner Type Platform Type Paper (Y)

General analysis
and processing
of RS data

General and RS PC processing tasks: scene
understanding, compression, and completion RGB-D, LiDAR Ground, aerial [6] (2022)

General analysis of 2D/3D RS data RGB-D, LiDAR,
SAR, MS/HS Aerial, satellite [7] (2022)

General and RS PC processing tasks: acquisition,
processing, and engineering applications

RGB-D, LiDAR,
MS/HS

Ground, aerial,
spaceborne [2] (2023)

Compression methods for automotive LiDAR PC LiDAR Ground [8] (2024)

Compression methods for automotive LiDAR PC
with analysis of impact on object detection LiDAR Ground [9] (2024)
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Table 1. Cont.

Application Short Description Scanner Type Platform Type Paper (Y)

RS applications
in scene
understanding

PC processing, general, and in RS: feature
extraction, object detection, and SS RGB-D, LiDAR Ground [10] (2019)

PC segmentation, general, and in RS RGB-D, LiDAR,
SAR, MS/HS Ground, aerial [11] (2020)

SS of images and PC RGB-D, LiDAR,
SAR, MS/HS

Aerial,
spaceborne [12] (2021)

PC segmentation, general, and in RS LiDAR Aerial [13] (2021)

PC segmentation, general, and in RS LiDAR Ground, aerial [14] (2022)

PC processing, general, and in RS:
classification, detection, and segmentation RGB-D, LiDAR Ground, aerial [15] (2024)

3D mesh
processing

PC and mesh processing, general, and in RS:
classification, detection, and segmentation RGB-D, LiDAR Ground, aerial [16] (2019)

SS of 3D meshes RGB-D, LiDAR Ground, aerial [17] (2023)

PC registration Registration of LiDAR data LiDAR, MS/HS Ground, aerial [18] (2018)
Image/PC matching in computer vision and
RS tasks Not specified Not specified [19] (2023)

PC registration, general, and in RS RGB-D, LiDAR Ground, aerial [20] (2024)

Multispectral
RS data

Fusion of RGB-D and LiDAR data in
different RS applications

RGB-D, LiDAR,
MS/HS

Ground, aerial,
spaceborne [21] (2017)

Spectral RS measurements RGB-D, LiDAR,
MS/HS Aerial [22] (2018)

Multispectral LiDAR applications in RS LiDAR, MS/HS Ground, aerial,
spaceborne [23] (2024)

2.1.1. General Analysis and Processing of Remote Sensing Data

The article by Camuffo et al. [6] reviews recent DL-based PC processing algorithms
for semantic scene understanding (classification, detection, and semantic segmentation
(SS)), compression, and PC completion. In contrast to previous, less structured studies, this
study suggests a new taxonomical classification of the methods covered based on variables
such as the setup for the acquisition, the properties of the PC data that are acquired,
data formatting, side information inclusion, and the features of DL architectures. This
classification identifies areas for future research and presents performance evaluations
using well-established datasets. The compression models discussed in this study, along
with several others, are explained in detail in Section 4.

The authors of [7] examine different applications of computer vision and pattern recog-
nition methods relative to RS data for change detection, boundary extraction, land cover
mapping, and target detection. They include a variety of imaging modalities such as digital
elevation models (DEMs); LiDAR PCs; and multispectral, hyperspectral, and SAR imagery.

In [2], Yang et al. address current research directions and trends in three areas: point
cloud big data acquisition (scanner types and scanner platforms); PC processing (such as de-
noising, completion, registration, segmentation, and surface reconstruction); and different
engineering applications (such as geospatial information, smart cities, underground space
development, infrastructure construction, automotive industry, and cultural heritage).

The authors of [8] provide an overview of current techniques for compressing point
cloud data from vehicular LiDAR sensors. They present a comprehensive classification that
categorizes these methods into four main groups: coding-based, format-based, 2D, and 3D
compression. The article evaluates these methods based on key performance metrics such
as the compression ratio (CR), bits per point (bpp), and point-to-plane error measures such
as the MSE and PSNR.
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In [9], Martins et al. characterize the impact of LiDAR PC compression on object
detection evaluated in the Kitti dataset [24]. The article presents a thorough review of
LiDAR PC compression methods (including learning-based methods) and object detection
methods. The compression models used were modified JPEG Pleno PC coding [25], G-
PCC [26], and L3C2 [27], and they are described in more detail in Section 4. The authors
indicate the availability of the datasets prepared for the study, which can be provided
upon request.

2.1.2. Remote Sensing Applications of Scene Understanding

State-of-the-art approaches to mobile laser scanner (MLS) data processing are sum-
marized by the authors of [10]. The tasks reviewed include segmentation based on feature
extraction, object detection, SS, and feature extraction (i.e., low-level properties such as
edge detection). The benchmark datasets that are currently available for SS and object
recognition are also listed.

Point cloud semantic segmentation (PCSS), which extends SS in 2D images to 3D
images by employing irregularly dispersed points in 3D space rather than regularly dis-
tributed pixels in 2D images, is described by the authors of [11]. Point clouds can be
produced from stereo or multiview imagery, or they can be directly acquired via distance-
measuring devices. Progress in stereovision algorithms and diverse 3D sensors has enabled
the easy generation of 3D point clouds.

Yuan et al., the authors of [12], reviewed recent developments in DL and basic deep
neural network designs to perform SS in RS data, including novel data types such as
PCs and hyperspectral images. When compared to applications in satellite imaging, re-
cent techniques typically perform poorly on unconventional, unstructured PCs and rich
spectral images. According to the authors, learning from very small datasets results in
a performance gap, showing that the limited availability of labeled non-conventional
RS data presents a major challenge to the development and assessment of novel deep
learning techniques.

In [13], two distinct aerial LiDAR datasets are used to conduct a thorough evalu-
ation of three popular DL networks for PCSS: PointNet++, SparseCNN, and KPConv.
These networks are assessed for generalization, computation time, classification accuracy,
and sensitivity to changes in hyper-parameters.

The authors of [14] review advanced DL models for LiDAR PC segmentation in RS.
The authors summarize publicly available 3D datasets for deep learning training and test-
ing and report performance values obtained when benchmarking the methods surveyed on
widely used datasets. The authors state that the dynamic graph CNN (DGCNN) and Con-
vPoint outperform other CNN models in remote sensing applications while maintaining
lightweight structures.

Three categories of PCSS techniques—projection-based, voxel-based, and direct point-
based techniques—are presented in detail and compared by the authors of [15], who also
provide a comprehensive overview of their development. Within the framework of PCSS,
each approach has a distinct use case. It is argued that when high-performance computing
systems are not available, projection-based techniques are the best option because they
prioritize computational efficiency over performance. According to the authors, voxel-
based techniques are appropriate for 3D object classification because they capture the entire
context, while point-based methods work well for applications such as 3D SS and are
excellent at capturing fine features.
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2.1.3. Three-Dimensional Mesh Processing

Recent DL architectures for 3D sensed data processing, including segmentation, ob-
ject detection, and classification, are reviewed by the authors of [16]. Background ideas,
conventional techniques, and contemporary methods and representation modalities such
as meshes, RGB-D, multi-view, volumetric, ordered, and unordered point clouds are
covered. The study also provides a descriptive list of datasets available for each type of rep-
resentation. The report finishes with a thorough analysis of deep learning’s prospects
for processing 3D sensed data, emphasizing the areas that would benefit most from
more research.

The article by Adam et al. [17] offers a thorough summary of recent advancements
in DL algorithms for SS in 3D meshes representing scenes at the urban scale. Several
mesh-based learning methods are described, generalizing DL algorithms on mesh surfaces.
Along with a discussion of benchmark large-scale mesh datasets and a comparative analysis
of the evaluated approaches, evaluation tools for assessing segmentation performance
are provided.

2.1.4. Point Cloud Registration

The authors of [18] provide a thorough evaluation of feature-based coarse registration
and fine registration techniques for LiDAR data in photogrammetry and RS. The methods
considered are based on coarse features and include surface-based, line-based, and point-
based techniques. The fine registration techniques described are iterative approximation
techniques (i.e., iterative closest point), normal distribution transforms (NDTs), random
sample consensus (RANSAC [28]), and techniques utilizing auxiliary data. As explained
in [29], the RANSAC algorithm can be also used in combination with the scale-invariant
feature transform (SIFT) to enhance registration efficiency. A comprehensive review of
current advancements in RANSAC-based methods can be found in [30]. The absence of
uniform assessment procedures and standard data has been noted as a major drawback as
it impedes a fair comparison between methods.

A thorough overview of the concepts and techniques for DL-based mismatch reduction
is provided by the authors of [19]. The authors provide an overview of several network
designs, geometric information extraction methods, and training modes. The authors list
current mining techniques, describe their permutation invariant features, and highlight
the significance of permutation invariance in these operations. In order to clarify the
principles and efficacy of widely used techniques, both intuitive and mathematical analyses
are offered.

An extensive description of DL-based PC registration is detailed by the authors of [20].
This review provides insights from four different angles: the attention mechanism, graph
convolutional network, multi-layer perceptron, and deep neural network. Also included
is a comprehensive analysis of registration performance measures and datasets related to
point cloud registration based on deep learning.

2.1.5. Multispectral Remote Sensing Data

Recent fusion techniques for optical images and LiDAR utilized in photogrammetry
and RS are reviewed by the authors of [21]. Many techniques, including real orthophoto-
graph creation, pan-sharpening, key target recognition, registration, classification, change
detection, 3D reconstruction, and forest inventory, are presented for data fusion in a variety
of applications.

The authors of [22] assess the most recent techniques for unmanned aerial vehicles
(UAVs) spectral RS, including geometric processing, sensor technologies, measurement
protocols, and radiometric calibration. The authors explain the trajectory of reflected energy
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as it travels from particles to being represented as pixels in 3D spectral point clouds, surface
maps, or 2D maps.

A comprehensive review of recent multispectral LiDAR technologies and their uses is
provided by the authors of [23]. The applications covered include topographic mapping,
change detection, ecology and forestry, bathymetry, objects and land use/land cover (LULC)
categorization, geology and archaeology, and navigation.

2.2. Remote Sensing in Specific Point Cloud Applications

This subsection provides an overview of several review papers dedicated to specific
RS-related PC applications. The articles surveyed are listed in Table 2, which adopts the
same format as Table 1.

Table 2. Summary of recently published review papers describing specific RS-related PC applica-
tions: MS/HS—multispectral/hyperspectral; BIM—building information modeling; SS—semantic
segmentation; RGB-D—depth is generated from stereo/multiview structure-from-motion (SfM) or
depth cameras; VR/AR—virtual reality/augmented reality.

Application Short Description Main Scanner Type Platform Type Paper (Y)

PC to urban model
reconstruction and
BIM

3D urban model reconstruction from PC RGB-D, LiDAR Ground, aerial [31] (2018)

3D urban model reconstruction from PC RGB-D, LiDAR,
SAR, MS/HS Ground, aerial [32] (2021)

Building information modeling RGB-D, LiDAR Ground, aerial,
spaceborne [33] (2022)

Road detection and
extraction in RS Road information inventory RGB, LiDAR, MS/HS Ground, aerial [34] (2016)

Road extraction in RS RGB-D, LiDAR,
SAR, MS/HS

Ground, aerial,
spaceborne [35] (2022)

Power line modeling Power line modeling RGB-D, LiDAR Ground, aerial [36] (2023)

Urban object change
detection Urban object change detection RGB-D, LiDAR Ground, aerial [37] (2023)

Structural damage
mapping Structural damage mapping RGB-D, LiDAR Aerial [38] (2019)

Critical infrastructure monitoring
using LiDAR LiDAR, MS/HS Ground, aerial [39] (2023)

Shoreline mapping Shoreline mapping – Aerial, spaceborne [40] (2022)

Shoreline mapping LiDAR Aerial [41] (2023)

Landslide detection Landslide detection RGB-D, LiDAR,
SAR, MS/HS

Ground, aerial,
spaceborne [42] (2020)

PC segmentation of
discontinuous plane
surfaces

PC segmentation of
discontinuous plane surfaces RGB-D, LiDAR Ground, aerial [43] (2022)

PC SS for specific
RS-related tasks Urban land cover SS RGB, LiDAR, MS/HS Aerial, spaceborne [44] (2015)

PC SS in heritage
building information modelling RGB-D, LiDAR Ground, aerial [45] (2023)

RS and other data
analysis in space

RS and other data analysis in space and
Mars InSight lander RGB-D Space [46] (2019)

RS and other data
analysis in water

RS systems frequently used in
ocean research

RGB, LiDAR, SAR,
SONAR, MS/HS

Ground, aerial,
spaceborne, shipborne [47] (2022)

RS systems frequently used in
ocean research

RGB, LiDAR, SAR,
SONAR, MS/HS

Ground, aerial,
spaceborne, shipborne [48] (2023)

Airborne oceanic LiDAR RS LiDAR Aerial [49] (2023)

Autonomous terrain-aided navigation
of deep-sea
underwater vehicles

RGB-D, LiDAR,
SONAR Underwater [50] (2024)
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Table 2. Cont.

Application Short Description Main Scanner Type Platform Type Paper (Y)

VR/AR applications
in RS Telepresence robots RGB-D, LiDAR Ground [51] (2022)

“BeHere”: collaboration system
based on virtual replicas RGB-D Ground [52] (2023)

2.2.1. Point Clouds in Urban Model Reconstruction and Building Information Modeling

The authors of [31] explore methods that may be used to reconstruct 3D models
of urban objects from PCs, including vegetation; buildings; utilities such as electric-
ity lines, roads, and bridges; and free-form architectural features such as statues and
curved buildings.

The authors of [32] offer a thorough analysis of cutting-edge point-cloud-based urban
scene reconstruction approaches, with a focus on data collection and the advantages and
disadvantages of important processing techniques. The authors review various techniques
for acquiring, organizing (points, voxels, and patches), registering, and reconstructing
point clouds in three dimensions.

The authors of [33] describe the approach of scanning for building information model-
ing (BIM). Photogrammetry and LiDAR procedures for creating point clouds are covered
in the paper. It also compares LiDAR systems mounted on diverse platforms, including air-
borne, spaceborne, mobile, and terrestrial ones, and discusses the advantages of combining
data from several sources. Additionally, thorough explanations of several PC processing
techniques—such as registration, sampling, SS, and compression—are given. In addition,
compression methods such as SPR-PCC [53] and projection-based algorithms [54] are
surveyed, as described later in Section 4.

2.2.2. Road Detection and Extraction in Remote Sensing

An overview of mobile LiDAR technology is provided by the authors of [34], who cover
geometrical accuracy validation, data error analysis, direct georeferencing, and system
components. A review of studies on road information inventory is carried out with an
emphasis on finding and extracting road surfaces, minor structures, and pole-like objects.

The authors of [35] provide a comprehensive review of road extraction techniques
using 2D images and 3D LiDAR point clouds. The authors classify these methods into three
main categories—2D, 3D, and fused approaches—with additional sub-grouping within
each category.

2.2.3. Power Line Modeling

The authors of [36] discuss the benefits and drawbacks of using cutting-edge LiDAR
scanning equipment and examine the advantages and disadvantages of several techniques
for 3D electrical power line corridor inspection. Their study focuses on techniques for
extracting and reconstructing power lines by surveying research articles devoted to that
problem, especially those published in conferences and journals related to geosciences. This
survey shows that image and PC-based methods are becoming more popular for detecting,
locating, segmenting, and inspecting power lines, enabling the automation of tasks related
to routine power line inspection and maintenance operations.

2.2.4. Urban Object Change Detection

The most recent advancements in PC data-based urban object change detection are
reviewed by the authors of [37]. Thanks to developments in structure-from-motion (SfM)
photogrammetry and LiDAR technologies, 3D change detection utilizing PC data has
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attracted substantial attention recently. The article offers a thorough examination of applica-
tions related to four categories of urban objects: construction sites, street scenes, structures,
and urban trees. The evaluation pays more attention to open-source datasets that incorpo-
rate change labels and provides an overview of how various data sources are used for each
type of object.

2.2.5. Infrastructure Management and Structural Damage Mapping

The evolution of UAV-based structural damage mapping is reviewed by the authors
of [38], which moves from basic descriptive overviews to complex texturing and segmen-
tation algorithms and deep learning techniques. Machine learning, enhanced autonomy
in mapping, damage mapping in GPS-denied environments, infrastructure maintenance,
and robotic UAVs are some of the emerging innovations summarized in this article.

A comprehensive review of LiDAR technology for both commercial and research ap-
plications is given in survey [39], along with information on its uses in critical infrastructure
monitoring. It covers the monitoring of distribution pipelines for water, oil, and gas; energy
production facilities; and ground and air transportation. It also provides an overview of the
LiDAR datasets that are currently available for these applications. PCL compression [55],
described in Section 4, was proposed as an solution for the problem of PC transmission
over Wi-Fi.

2.2.6. Shoreline Mapping

A comprehensive assessment of the literature on shoreline mapping published from
2000 to 2021 is presented by the authors of [40], who attempt to find and analyze research
topics and patterns pertaining to shoreline change detection. The authors come to the
conclusion that, in light of the significance of safeguarding communities in delta, coastal,
and riverine regions, it is imperative to address research gaps in shoreline change analysis
by posing new questions and utilizing newer instruments and technologies such as artificial
intelligence and machine learning. According to the authors, UAVs, PC data for shoreline
change analysis, and high-resolution satellite imagery might all be used as techniques for
achieving centimeter-level accuracy.

An overview of coastline mapping using aerial LiDAR is presented by the authors
of [41], which covers the availability of data, laser scanning equipment, and current ex-
traction approaches throughout the past 20 years. The authors conclude that there are still
data availability issues and some limitations inherent in the technology when it comes to
using aerial LiDAR for coastline mapping. Still, many opportunities exist for improvement,
particularly when paired with LiDAR point cloud processing methods based on deep
learning algorithms.

2.2.7. Landslide Detection

The authors of [42] review typical remote-sensing techniques for landslide assessment,
with an emphasis on their applicability to hazard detection and monitoring while taking
location and survey costs into consideration. The overview discusses systems that are
terrestrial, airborne, and spaceborne and outlines the advantages and disadvantages of each
for the acquisition, analysis, and interpretation of data. The presented examples include
lasergrammetry, terrestrial optical photogrammetry, and interferometric synthetic aperture
RADAR (InSAR).

2.2.8. Point Cloud Segmentation of Discontinuous Plane Surfaces

The benefits, drawbacks, and capabilities of different segmentation algorithms for
surface extraction from discontinuity planes are reviewed by the authors of [43], who
also discuss the difficulties specific to the processing of PC data representing rock faces.
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Analyses of segmentation and orientation results from studies on two rock mass surface
PC datasets are presented, and some recommendations for generating consistent and
repeatable ground truth orientations are given.

2.2.9. Point Cloud Semantic Segmentation for Specific Remote-Sensing-Related Tasks

The use of small-footprint LiDAR sensors for high-resolution aerial RS applied to
urban land cover SS is reviewed by the authors of [44]. The conclusion is that satellite
RS has been shown to be effective for monitoring land cover on a wide scale; however,
more research has to be carried out on finer-scale maps, particularly in metropolitan areas,
as this has been demonstrated by a number of biophysical and socioeconomic studies.
The article also covers the use of compression methods in the applications surveyed,
namely, LASzip [56], LCMP [57], lossy LAS [58], and octree-based compression [59] (some
of which are reviewed in Section 4).

The integration of PCSS with the workflow of historical building information modeling
(HBIM) is reviewed by the authors of [45], in a survey study. The article summarizes a few
dozen studies covering automatic and semi-automatic methods and tools for geometric
modeling applied to HBIM.

2.2.10. Space Exploration and Remote Sensing Applications

The authors of [46] examine the sensor choice and application of the Mars InSight
Lander (Interior exploration utilizing Seismic Investigations, Geodesy, and Heat Transport).
Image products are used extensively in many lander tasks, such as processing raw telemetry;
making mosaics; creating terrain meshes; stereo correlation; radiometric correction; and
producing various products such as instrument deployment maps, surface normals, PC
data, and layers for roughness maps.

2.2.11. Remote Sensing in Aquatic Environments

The authors of [47,48] cover twelve distinct RS systems that are frequently used in
ocean research: four passive (optical systems, thermal infrared radiometers, microwave
radiometers, and global navigation satellite system reflectometry) and eight active (SAR,
scatterometers, altimeters, LiDAR, gravimeters, SONAR, high-frequency RADAR, and ma-
rine RADAR) systems. A thorough evaluation and discussion were conducted on 15
applications of RS in the ocean, utilizing various RS systems and approaches: ocean surface
wind, ocean wave height, ocean surface current, ocean tide, ocean surface salinity, ocean
color, ocean chlorophyll, ocean oil spills, underwater ocean, sea level, sea ice, icebergs, sea
surface temperature, ship detection, and fisheries.

The authors of [49] provide an overview of airborne oceanic LiDAR RS technology
and applications. Multi-channel airborne LiDAR devices are intended to greatly enhance
the resolution and quality of data for marine biological and geographic profiles. In order
to encourage further study in ocean biogeochemistry, algorithms for biological product
retrieval and modeling based on common radiation transfer models are described.

The study presented in [50] marks a significant advancement in the autonomous and
precise operation of deep-sea autonomous underwater vehicles (AUVs) near the seabed,
focusing on enhancing underwater terrain-aided navigation (TAN) techniques. TAN
leverages underwater terrain features as reference points for positioning. It enables the
real-time localization of AUVs within pre-existing terrain maps by actively detecting and
tracking distinct terrain characteristics, maintaining positioning errors constrained within
temporal and spatial domains. The article explores the background, operational principles,
and key technical aspects of underwater TAN. It reviews the algorithms central to the two
primary modules of TAN: the terrain-aided positioning module and the iterative filtering
estimation module.
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2.2.12. Virtual and Augmented Reality for Remote Sensing Applications

An application of virtual reality/augmented reality (VR/AR) applications in RS in-
volves telepresence robots, which are increasingly recognized for their role in enhancing
social interactions [51]. An example of remote collaborative systems called "BeHere", where
co-presence can be useful for instructions based on virtual replicas, combining gestures and
avatars for procedural tasks, is explained by the authors of [52]. In this case, RGB-D frames
are encoded and transmitted to the remote side, where they are decoded and reconstructed
into PCs.

2.3. Agriculture-Related Applications

This subsection surveys and synthesizes the contents of several review studies focused
on the use of PCs and related representations in remote sensing applications to agriculture.
The studies are listed in Table 3 in the usual format.

Table 3. Summary of recently published review papers describing agriculture-related PC processing
in RS: MS/HS—multispectral/hyperspectral; RGB-D—depth generated from stereo/multiview
structure-from-motion (SfM) or depth cameras.

Application Short Description Main Scanner
Type Platform Type Paper (Y)

General
agriculture Agriculture RGB-D, LiDAR,

MS/HS Aerial [60] (2019)

Agriculture LiDAR Ground, aerial,
satellite [61] (2023)

Forestry Delineation of individual tree crowns RGB-D, LiDAR,
MS/HS Aerial [62] (2017)

Forest management in Nordic countries RGB-D, LiDAR,
MS/HS Aerial, satellite [63] (2018)

Forest RS using drone and LiDAR LiDAR Aerial [64] (2019)

SfM photogrammetry for RS data in
forestry RGB-D Aerial [65] (2019)

RS analysis of European aspen in
boreal forests

RGB-D, LiDAR,
MS/HS

Ground, aerial,
satellite [66] (2020)

Tree species’ classification LiDAR, MS/HS Aerial [67] (2021)

Timber assortments LiDAR Ground, aerial [68] (2022)

LiDAR versus destructive harvesting to
quantify above-ground biomass LiDAR Ground [69] (2022)

Forest restoration in RS RGB-D, LiDAR,
MS/HS

Ground, aerial,
satellite [70] (2022)

Forest resource assessment RGB-D, LiDAR,
MS/HS

Ground, aerial,
satellite [71] (2024)

Vegetation
parameter
extraction

Soil moisture and plant water stress Thermal image Satellite [72] (2016)

Leaf area index (LAI) retrieval LiDAR Aerial [73] (2021)

Extraction of vegetation parameters in
savanna biome LiDAR, MS/HS Ground [74] (2021)

Vegetation cover fraction (fCover) RGB-D, LiDAR,
MS/HS

Ground, aerial,
satellite [75] (2023)

Viticulture Precision viticulture RGB-D, LiDAR,
MS/HS

Ground, aerial,
satellite [76] (2023)

Weed
management Weed management in RS RGB-D, LiDAR,

MS/HS Ground, aerial [77] (2022)
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2.3.1. General Use

The authors of [60] discuss the use of unmanned aircraft systems (UASs) to affect
remote imaging for improved farming operations such as field mapping, chemical spraying,
biomass estimation, plant stress detection, weed control, and inventory counting. Different
tools and technologies, such as PCs, vegetation indices, machine learning algorithms,
and statistical methods, are crucial to precision agriculture.

The authors of [61] examine research on the use of LiDAR systems, such as MLSs, aerial
laser scanners (ALSs) and terrestrial laser scanners (TLSs), in precision agriculture, with a
focus on crop cultivation. Subsequently, they showcase current LiDAR uses, particularly
in digitizing trees and plants, estimating crop-related metrics, planning and decision
assistance, and object detection and navigation.

2.3.2. Forestry

Several articles are specific to forestry applications of remote-sensing-based on PCs.
The methods for delineating individual tree crowns from 3D data and their applica-

tions in ecology and forestry are reviewed by the authors of [62]. It is determined that while
approaches utilizing the entire point cloud are required to identify smaller trees beneath
the canopy, 2D surface model methods (derived from point clouds) are often the best for
detecting taller trees.

The current status of national forest inventory and forest management in the Nordic
countries is examined by the authors of [63], who also highlight the advantages and
disadvantages of different RS materials and data-gathering techniques from the viewpoints
of various audiences.

The authors of [64] evaluate the technical prerequisites for generating high-quality
measurements from autonomous platforms with various drone aircraft and commercial
laser scanners. An example of an autonomous helicopter in a Southern Czech Republic’s
temperate mountain forest is also included in the case study.

The possible application of consumer-grade cameras and unmanned aerial vehicles
for terrestrial SfM-based surveys in forestry is covered by the authors of [65]. The authors
show that with the help of the SfM workflow, foresters can gather several RS datasets, using
a single sensor to generate multiple spatial products.

The authors of [66] summarize current knowledge about the ecological significance of
the European aspen, talk about the challenges associated with understanding the species’s
occurrence and dynamics in boreal forests, and look at the possibilities presented by
different RS technologies for aspen mapping.

The authors of [67] summarize research on the categorization of tree species using
data from aerial laser scanning, identifying the best classification algorithms and the most
useful features generated from LiDAR. It is argued that the most accurate features are those
derived from full-waveform data, while radiometric features mixed with height data also
work well. Furthermore, according to the publications reviewed, the best results for species
discrimination are obtained with support vector machines and random forest classifiers.

Alvites et al., in [68], look at the classification and quantification of timber assortments
using terrestrial and aerial LiDAR devices, including UASs. When it comes to describ-
ing understory trees, terrestrial LiDAR systems perform quite well. For comprehensive
timber assortment data over huge forest areas, combining terrestrial technologies with
airborne/UAS LiDAR looks promising. Furthermore, there is increased interest in these ap-
proaches, as observed via the increasing usage of machine and DL algorithms in analyzing
LiDAR data.
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The authors of [69], Demol et al., compare data from ten TLS-derived above-ground
biomass (AGB) investigations with values based on destructive tree harvesting. It was
concluded that AGB obtained from TLS closely matches values from destructive analyses.

The authors of [70] examine feasible alternatives for developing targets for landscape
forest restoration that take spatial patterns into account. The hierarchical levels of a forested
surrounding are represented via spatial patterns in analyses. The division of the landscape
is carried out hierarchically: sub-catchments, vegetation patches, and individual trees.

The authors of [71] describe distinct instances of DL methods in diverse forest applica-
tions and classify them based on their processing techniques and operational principles.
Several sensors and equipment used to collect data on forests are introduced. The authors
also list and provide details about forest imagery datasets that are currently accessible and
investigate the global geographic distribution of the related research.

2.3.3. Vegetation Parameter Extraction

Using satellite thermal images, the authors of [72] investigate the merits and limitations
of the most widely used models for determining plant water stress and soil moisture. They
also report a number of indicators, such as the normalized differential vegetation index,
also applied to assess soil moisture, in addition to evapotranspiration.

Basic leaf area index (LAI) retrieval techniques, validation procedures, and constraints
are reviewed by the authors of [73], employing point cloud data from aerial LiDAR scanners.
The gap fraction model and empirical regression are the two primary LAI retrieval method
types evaluated. The empirical and gap fraction models’ poor scalability over time, space,
and various airborne LiDAR systems is demonstrated via empirical validation.

The authors of [74] investigate different facets of vegetation parameter extraction
with TLS, such as retrieval techniques and parameters extracted from TLS point clouds.
Primary and secondary vegetation parameters are examined. The primary parameters are
computed directly from point clouds, whilst the secondary parameters are approximated
from the primary ones.

The common applications of vegetation cover fraction (fCover) in a variety of fields,
settings, and scales are presented by the authors of [75]. Along with traditional non-imaging
techniques, the review includes LiDAR return-based techniques (e.g., return intensity
retrieval, return number index), image-based techniques (e.g., spectrum retrieval, unmixing,
segmentation), and PC-based techniques (e.g., rasterization) on different platforms.

2.3.4. Viticulture

Precision viticulture potential and uses are covered by the authors of [76]. The ex-
planation of various sensor types and their working principles covers both proximal and
RS platforms, such as satellites and UAVs. The study includes descriptions of vegetation
status indicators used in viticulture, as well as supervised and unsupervised techniques
for image classification and segmentation. Additionally, it investigates photogrammetric
techniques for dense PC-based 3D canopy modeling. The study also highlights how large-
scale datasets may be processed and analyzed using deep learning and machine learning
approaches to evaluate the physiological and agronomic biomarkers of vineyards.

2.3.5. Weed Management

Dobbs et al. examine the applications of 3D imaging technologies in [77], such as
photogrammetry, SfM, and LiDAR, in weed management. The authors explore the applica-
tions of 3D photogrammetric imaging in weed management, such as weed detection and
mapping for targeted removal, and in weed-related research, such as modeling weed–crop
competition, to predict yield loss. They also examine the use of 3D imaging for weed
management in orchards and grasslands.
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3. Point Cloud Datasets for Remote-Sensing-Related Tasks
This section provides an overview of various datasets that are particularly relevant to

tasks related to RS. These datasets are diverse in nature and are categorized based on the
type of PC data. To facilitate a more structured understanding, we classify the datasets into
six distinct categories, as depicted in Figure 3:

• Urban scenes: This category includes datasets of urban environments, such as build-
ings, roads, and public infrastructure. These datasets are used for applications such as
urban planning or traffic management.

• Outdoor- and vehicle-related contexts: Datasets in this category cover large-scale
outdoor environments and vehicle-centric data, often used in autonomous driving
research and outdoor navigation systems. They typically include data from roads,
highways, and surrounding landscapes.

• Indoor scenarios: These datasets focus on enclosed environments such as homes and
offices. They are typically used for applications in robotics and interior mapping.

• Small-size and medium-size object representation: This category is dedicated to
datasets capturing smaller objects and simple shapes. It is used for object recognition,
segmentation, and shape understanding.

• Agriculture-related contexts: Datasets here represent agricultural landscapes, in-
cluding crops and fields. These are typically used in precision agriculture and
crop monitoring.

• Other application-specific datasets: This category includes datasets that do not fit
into the above categories. These datasets are commonly used in research studies on
compression methods and visual quality evaluations.

Each of these datasets acts as a reference for the compression methods that will be
discussed in further detail in Section 4. Categorization also helps determine which dataset
is most suited for particular RS-related tasks, improving the effectiveness of compression
methods designed for each type of PC data.

Table 4 summarizes 10 urban scenario datasets, referencing studies from 2017 to 2024,
including one online repository, that are frequently referenced in research for evaluating
and comparing different algorithms. Each dataset is accompanied by a brief description
to highlight its key features and applications. It can be observed that most datasets are
primarily designed for semantic segmentation. The UseGeo dataset [78] can be used
for 3D reconstruction from images, supporting both single-image depth estimation and
multi-view 3D reconstruction, with LiDAR data serving as a reference. Other tasks can
be also performed, including image orientation, feature extraction and matching, the
automated registration of images with LiDAR data, and semantic segmentation. The 3DTK
repository [79] offers a diverse collection of point clouds, primarily intended for testing and
developing PC registration algorithms. However, some datasets within the repository can
also be utilized for change detection and object detection. Several PCs include additional
attributes such as color, thermal, and reflectance information.

Table 5 summarizes 21 outdoor- and vehicle-related datasets, referencing papers from
2011 to 2024. A short description of each dataset is also given. Global navigation satellite
system (GNSS) and inertial measurement unit (IMU) information is present in most datasets,
except for the Waymo and ONCE datasets, which provide similar information: vehicle
poses at different points in time (both) and translational and angular velocity (Waymo).
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PC datasets for RS-related tasks (70)

Small- and medium-size
object representation (8)

ModelNet
ShapeNetCore,

ShapeNetSem
ShapeNet Parts

Visionair
ScanObjectNN

PartNet
OmniObject3D
Objaverse-XL

Agriculture-related contexts (6)

LFuji-air
Corn50

H3D
Pheno4D

VineLiDAR
Treescope

Other application-specific datasets (12)

JPEG Pleno
MVUB

8iVFB v2
Owlii

8iVSLF
ICIP2020

vsenseVVDB2
SJTU-PCQA

UVG-VPC
BASICS

PC-plosses
WPC

Urban scenes (10)

3DTK
Semantic3D
Toronto-3D
DALES
DALES objects
Swiss3DCities
SensatUrban
BuildingNet
STPLS3D
UseGeo

Outdoor- and vehicle-
related contexts (21)

Ford
KITTI
Argoverse
nuScenes
SemanticKITTI
Waymo
Argoverse2
ONCE
PandaSet
Panoptic nuScenes
DAIR-V2X
ONCE-3DLanes
Ithaca365
V2X-Sim
OpenLane-V1
OpenLane-V2
V2X-Seq
V2V4Real
Occ3D
V2X-Real
WaterScenes

Indoor scenarios (13)

SUN-RGBD
S3DIS
SceneNN
Scannetv2
SUNCG
Structured3D
ARKitScenes
HM3D
Scannet200
TO-Scene
Scannet++
HM3DSem
Instruct3D

PC datasets for RS-related tasks (70)

Figure 3. Map of discussed point cloud datasets for remote-sensing-related tasks.

Table 4. Summary of recently published studies describing urban-level datasets: N. CL—number
of classes; N. P—number of points; RSM—real/synthetic/mixed; TLS—terrestrial laser scanner;
MLS—mobile laser scanner; ALS—aerial laser scanner; UAV-P—UAV photogrammetry; UAV-L—
UAV LiDAR; SS—semantic segmentation; IS—instance segmentation; DE—depth estimation.

Dataset Name Platform N. CL N. P
Area (m2)
or Length (m)
Covered

Average Point
Density
(pts/m2)

RSM Task
Suitability Short Description

3DTK [79] Several – – – – R PC registration
Repository for 3D point clouds
from robotic experiments

Semantic3D [80] TLS 8 4 × 109 – Varying R SS Wide range of urban outdoor
scenes

Toronto-3D [81] MLS 8 78.3 × 106 1 × 103 m 1000 R SS PC dataset of Toronto, Canada

DALES [82] ALS 8 505 × 106 10 × 106 m2 50 R SS Dayton-annotated LiDAR
earth scan (DALES)

DALES
objects [83] ALS 8 492 × 106 10 × 106 m2 50 R SS, IS DALES dataset [82] with

additional intensity and IS

Swiss3DCities [84] UAV-P 5.2

3147 × 106

hi-res;
226 × 106

mid-res
2.7 × 106 m2

1166
hi-res;
84
mid-res

R SS
PCs from three cities in
Switzerland: Zurich, Zug, and
Davos

SensatUrban [85] UAV-P 13 (31) 2847 × 106 7.64 × 106 m2 373 R SS
PCs from three cities in UK:
Birmingham with SS, Cambridge
with SS, and York without SS

BuildingNet [86] mesh,
PC 31 200 × 106 – – S SS,

classification

Labeled mesh and PC
building parts; 2000 objects
(100 × 103 points per mesh) with
292 × 103 annotated components
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Table 4. Cont.

Dataset Name Platform N. CL N. P
Area (m2)
or Length (m)
Covered

Average Point
Density
(pts/m2)

RSM Task
Suitability Short Description

STPLS3D [87] UAV-P

9/9/9/9
real;
6/17/20
synthetic

–
1.27 × 106 m2

real;
16 × 106 m2

synthetic

100 real;
11 synthetic M SS, IS

SS on four real datasets (nine
different classes each); synthetic
3D data generation method with
three IS datasets (6/17/20
different classes each)

UseGeo [78] UAV-L,
UAV-P – 392.8 × 106 0.715 × 106 m2

(image area) 51 R

Multiview DE,
monocular DE,
feature extraction
and matching, SS

UAV-based multi-sensor (RGB,
LiDAR) datasets for geospatial
research

Table 5. Summary of recently published papers describing outdoor- and vehicle-related datasets:
RSM—real/synthetic/mixed; bbox—bounding boxes; Det—detection; Tra—tracking; MF—motion
forecasting; SS—semantic segmentation; PS—panoptic segmentation; IS—instance segmentation.

Dataset Name Type RSM Short Description

Ford [88] LiDAR,
360◦ RGB R 3 sequences with 1500 scans each; on average, 100 × 103 points per scan.

KITTI [24] LiDAR,
RGB R Det 2D/3D: 7481/7518 train/test images/PC, 80,256 bbox for 3 (3) classes;

Tra: 917 tracked objects for 2 classes.

Argoverse [89]
LiDAR,
360◦ RGB,
stereo

R
Det 3D: 22 × 103 scenes, 993 × 103 bounding boxes, 15 (17) classes;
Tra: 113 scenes, each 15–30 s, 11,052 tracks, 15 (17) classes;
MF: 324,557 scenes, each 5 s, 11.7 × 106 unique tracks, 1 class;
Stereo: 6624 stereo pairs with ground truth depth.

nuScenes [90]
LiDAR,
360◦ RGB
RADAR

R
Det 2D/IS 2D: 93,000 images, 800 × 103 bbox and IS masks (foreground objects), 23 classes;
Det 3D: 40 × 103 PC, 1.4 × 106 bbox, 10 (23) classes.

SemanticKITTI [91] LiDAR R Det 3D: 23 × 103/20 × 103 train/test PC; 682 × 103 bbox for 8 classes;
SS 3D: 23 × 103/20 × 103 train/test PC; 4, 549 × 106 points for 25 (28) classes.

Waymo [92] LiDAR,
360◦ RGB R

Det 2D/Tra: 1 × 106 images, 9.9 × 106 bbox, 256 × 103 unique IDs, for 3 classes;
Det 3D/Tra: 230 × 103 PC, 12 × 106 bbox, 113 × 103 unique IDs, for 4 classes;
Added: MF (103,354 scenes, each 20 s, 10.8 × 106, 3 classes),
2D video (100 × 103 images) SS for 28 and PS for 3 classes, 3D SS for 23 classes.

Argoverse2 [93]
LiDAR,
360◦ RGB,
stereo

R

Det 3D/Tra: 1000 scenes, each 15s with 30 classes;
“LiDAR” (unannotated): 20,000 scenes, each 30 s, with LiDAR, HD maps, pose;
MF: 250,000 scenes, each 11 s, 10 classes, 13.9 × 106 unique tracks;
Map change: 1000 scenes, each 45 s, with LiDAR, HD maps; 200 with map changes.

ONCE [94] LiDAR,
360◦ RGB R Det 2D: images from annotated PC, 769 × 103 bbox, 5 classes, unannotated 7 × 106 images;

Det 3D: annotated 16,000 PC, 417 × 103 bbox, 5 classes, unannotated 1 × 106 PC.

PandaSet [95] LiDAR,
360◦ RGB R Det 3D: 8240 annotated PC from 103 scenes, 28 classes;

SS 3D: 6080 annotated PC from 76 scenes, 37 classes.

Panoptic
nuScenes [96] LiDAR R SS 3D/PS 3D/Panoptic tracking: 40 × 103 PC,

1, 1 × 109 points for 16 (32) classes.

DAIR-V2X [97] LiDAR,
RGB R

Sensory inputs from vehicles, infrastructure, and collaborative vehicles–infrastructure:
Det 2D/3D: 71,254 images/PC from vehicles and infrastructure, 10 classes, 1.2 × 106 bbox;
SS 2D/3D: 71,254 images/PC from vehicles and infrastructure, 10 classes.

ONCE-
3DLanes [98]

LiDAR,
360◦ RGB R Annotated lanes in 2D and 3D from ONCE dataset [94].

Ithaca365 [99] LiDAR,
RGB R

Repeatedly recorded: diverse scenes, weather, time, and traffic conditions:
2D: bbox, amodal IS, and road segmentation, 7000 images, 6 classes;
Det 3D: 175 PC, 6 classes

V2X-Sim [100] LiDAR,
360◦ RGB-D S

Simulated multi-agent perception dataset for collaborative autonomous driving,
up to 5 vehicles and 1 set of infrastructure;
SS 2D: 6 RGB cameras with 60 × 103 images, bird’s eye view;
Det 3D/Tra: 10 × 103 PC with 26.6 × 103 bbox.

OpenLane-
V1 [101]

LiDAR,
360◦ RGB R Annotated lanes in 2D and 3D from Waymo dataset [92].

OpenLane-
V2 [102]

LiDAR,
360◦ RGB R Annotated lanes in 2D and 3D from Argoverse2 [93] and nuScenes [90] datasets.
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Table 5. Cont.

Dataset Name Type RSM Short Description

V2X-Seq [103] LiDAR,
RGB R

Det 3D/Tra: 15,000 images/PC from vehicle and infrastructure, 10 classes,
110 tracked objects per scene, 95 scenes;
MF: 210,000 scenes, each 10s, 8 classes, with traffic light.

V2V4Real [104] LiDAR,
360◦ RGB R

Real multi-agent perception dataset for collaborative autonomous driving,
2 vehicles with collaboration;
Det 3D: 40 × 103 images, 20 × 103 PC with 240 × 103 bbox, 5 classes.

Occ3D [105] LiDAR R 3D voxel occupancy dataset semi-automatically labeled from Waymo [92]
and nuScenes [90] datasets.

V2X-Real [106] LiDAR,
360◦ RGB R

Real multi-agent perception dataset for collaborative autonomous driving,
2 vehicles and 2 sets of infrastructure with 4 collaboration combinations;
Det 3D: 171 × 103 images, 33 × 103 PC with 1.2 × 106 bbox, 10 classes.

WaterScenes [107] 4D RADAR,
RGB R

2D: bounding box, pixel annotations, 7 classes, 54,120 objects;
3D: point-level RADAR PC annotations, 7 classes, 54,120 objects;
Tasks: object detection, waterline segmentation, free-space segmentation,
object tracking, SS, IS, PS, panoptic perception.

Table 6 summarizes 13 indoor-scene datasets, referencing papers from 2015 to 2023,
that are frequently utilized in research articles for benchmarking and evaluating various
algorithms. Each dataset is accompanied by a concise description, highlighting its primary
characteristics and typical applications.

Table 6. Summary of recently published papers describing indoor-scene datasets: N. CL—number
of classes; N. SC—number of scenes; RSM—real/synthetic/mixed; PS—panoptic segmentation;
IS—instance segmentation.

Dataset Name Type N. CL N. SC RSM Short Description

SUN-RGBD [108] RGB-D,
PC

800 10,355 R Semantic annotation of 10,355 RGB-D scene images in 47 scenes

categories with about 800 object categories; annotated 146,617 2D
polygons and 64,595 3D bounding boxes

S3DIS [109] PC 12 5 R Stanford 3D indoor scene;
semantic annotation of five indoor-area PCs with 215 × 106 points

SceneNN [110] mesh,
RGB-D

40 100 R 100 RGB-D video scenes, reconstructed, annotated with per-vertex
and per-pixel labels, bounding boxes for 1482 objects, object poses

Scannetv2 [111] mesh,
RGB-D

20 1,613 R 1,513 RGB-D video scenes with 3D camera poses, reconstructed,
36,213 objects (18 classes) with bounding boxes; voxel segmentation
(18/20 classes for IS/PS, respectively)

SUNCG [112] mesh 84 49,884 S 49,884 valid floors, with contain 404,058 rooms and 5,697,217 object
instances from 2644 unique object meshes covering 84 categories;
used for the semantic scene completion

Structured3D [113] mesh,
RGB

– 3500 S 3D “primitive + relationship” structure annotations of 21,835 rooms
in 3500 scenes; 196,000 photo-realistic 2D renderings of the rooms

ARKitScenes [114] PC,
RGB-D

– 5047 R RGB-D and PC acquisition of 5047 indoor scans; PC with annotated
object bounding boxes from 17 furniture categories

HM3D [115] mesh;
RGB

– 1000 R Habitat–Matterport 3D: 1000 building-scale textured 3D mesh
reconstructions (no segmentation)

Scannet200 [116] PC 200 1513 R 3D IS based on ScanNet with 200 classes

TO-Scene [117] mesh 52 16,077 M 16,077 scenes with real tables and 60,174 synthetic objects on;
vertex segmentation, 3D bounding boxes, and camera poses

Scannet++ [118] PC,
RGB-D

>1000 460 R 460 3D reconstructions of indoor scenes with dense semantic
and instance annotations; DSLR images and RGB-D sequences

HM3DSem [119] mesh;
RGB

1625 216 R Habitat–Matterport 3D Semantic: 142,646 object instance
annotations of 216 3D spaces with 3100 rooms

Instruct3D [120] PC – 280 R 280 scenes from Scannet++ [118] with approximately 10 different
segmentation instructions, with 2565 instruction–point cloud pairings

Table 7 summarizes eight datasets featuring 3D objects, referencing papers from 2015
to 2023, that are widely used in research articles to benchmark and compare different
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algorithms. Each dataset is accompanied by a brief description, summarizing its key
features and typical research applications.

Table 7. Summary of recently published papers describing object datasets: N. CL—number of classes;
N. O.—number of objects; RSM—real/synthetic/mixed; IS—instance segmentation.

Dataset Name Type N. CL N. O. RSM Short Description

ModelNet [121] mesh 660 151,128 S Annotated per model class

ShapeNetCore [122] mesh 55 51,300 S Annotated per model class

ShapeNetSem [122] mesh 270 12,000 S Annotated per model class; additional information is present

ShapeNet Parts [123] mesh 16 31,963 S Annotated parts, 42 labels for 16 classes, from ShapeNetCore dataset

Visionair [124] mesh – 60 S Sixty distinct models, from rigid items (i.e., Chair) to smooth non-rigid
objects (i.e., Bunny), downloaded from the Visionair repository

ScanObjectNN [125] PC 15 15,000 R From 700 scenes from SceneNN and Scannet selected 2902 unique
objects; IS of 15 categories (with part annotations)

PartNet [126] mesh 24 26,671 S 573,585 part instances with fine-grained, instance-level,
and hierarchical 3D part information

OmniObject3D [127] mesh;
video

190 6000 R Input meshes are rendered to PC and RGB-D images are included;
COLMAP camera poses; rich text description of each object

Objaverse-XL [128] mesh – >10 × 106 M 10.2 million 3D deduplicated objects, coming from several sources,
including metadata information, i.e., textual description

Table 8 summarizes six datasets related to agriculture that are frequently referenced in
research articles, referencing papers from 2020 to 2024. Each dataset is briefly described,
highlighting its core features and specific agricultural applications and providing a clear
understanding of their suitability for various research tasks.

Table 8. Summary of recently published studies describing agriculture-related datasets (N. CL—
number of classes; N. P/F—number of points/faces; ULS—UAV laser scanner; MLS—mobile laser
scanner; SS—semantic segmentation).

Dataset Name Platform Type N. CL N. P/F Short Description

LFuji-air [129] MLS PC – – 11 LiDAR-based PCs of Fuji apples trees with 1353 apple
annotations

Corn50 [130] – PC – – 50 RGB PCs of artificial corn plants

H3D [131] ULS PC, mesh,
RGB

11 73,909,354 P
8,550,338 F

LiDAR PCs and meshes of the village of Hessigheim,
captured at four different epochs

Pheno4D [132] ULS PC 3 260 × 106 PCs from 7 maize and 7 tomato plants over several days;
Segmentation of “soil”, “stem”, and instance “leaf” points

VineLiDAR [133] ULS PC – 356,633,530 P 10 3D LiDAR PCs in LASzip [56] format with RGB color

Treescope [134] ULS,
MLS

PC – – SS and diameter estimation in agricultural environments: pine,
oak, maple, and cedar forests; almond and pistachio orchards

Table 9 summarizes 12 specific datasets, referencing studies from 2016 to 2023, in-
cluding one online repository, that are frequently utilized in research studies focused on
compression techniques and visual quality assessments. Each dataset is briefly described,
showcasing its relevance and use cases in the context of PC data processing and evaluation.
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Table 9. Summary of recently published papers describing specific datasets (N. O—number of objects;
RSM—real/synthetic/mixed).

Dataset Name Type N. O RSM Short Description

JPEG Pleno [135] PC,
mesh

– R Diverse set of static and dynamic PCs for different tasks,
such as static and dynamic PC compression

MVUB [136] PC 10 R JPEG Pleno Database: Microsoft Voxelized Upper Bodies (MVUB)—
A Voxelized Point Cloud Dataset (dynamic)

8iVFB v2 [137] PC 4 R JPEG Pleno Database: 8i Voxelized Full Bodies (8iVFB v2)—
A Dynamic Voxelized Point Cloud Dataset with 10-bit depth

Owlii [138] PC 4 R Owlii Dynamic Human Textured Mesh Sequence Dataset, 4 dynamic PCs

8iVSLF [139] PC 6 R 8i Voxelized Surface Light Field (8iVSLF) Dataset—
A Dynamic Voxelized Point Cloud Dataset with 12-bit depth

ICIP2020 [140] PC 6 R Static 6 original from [135] and 90 processed PCs, using two compression algorithms
(G-PCC, V-PCC [141]) and octree pruning, for objective quality assessment

vsenseVVDB2 [142] PC,
mesh

8 R Dynamic 4 PCs and 4 mesh sequences, compressed with Draco (for meshes) [143], G-PCC
and V-PCC (for PCs) codecs [141] 152 distorted; for objective quality assessment

SJTU-PCQA [144] PC 10 R Static 10 original from [135] and 420 processed PCs, using 7 distortion types,
for objective quality assessment

UVG-VPC [145] PC 12 R Dynamic voxelized PCs for visual volumetric video-based coding

BASICS [146] PC 75 R Static 75 original and more than 1200 processed PCs using 4 compression algorithms,
for objective quality assessment

PC-plosses [147] PC 4 R Dynamic 3 original (from [135,138] ) and 105 processed PCs, V-PCC-compressed
[141] and degraded by packet losses, for objective quality assessment

WPC [148] PC 20 R Static 20 original and 740 processed PCs, using 5 distortion types,
for objective quality assessment

4. Point Cloud Compression
This section provides an overview of some of the current PC compression models

and methods, with the aim of providing additional information to fill the gaps left by
most of the review papers covered in this survey. Two articles surveyed in this text,
refs. [6,8], are exceptions in this aspect as they describe and compare some point cloud
compression methods. An important aspect of PC compression methods is the evaluation
of the distortion introduced by the (lossy) coding, usually through the use of objective
measures that compare the quality of the reconstructed PC with that of the original PC.
A good amount of information about these measures can be found in [149,150].

We classify the compression methods into several categories with some common
properties, as shown in Figure 4, in which the main categorization is related to the basic
coding principle. While general lossless data compression algorithms such as ZIP or RAR
can be applied to PCs, they are not specifically designed for this purpose and are therefore
not included in this survey.

Table 10 provides an overview of the PC compression methods and their specific
application types and use cases inferred mostly from the datasets employed in the reviewed
studies. The methods listed are compared relative to several properties: the type of
point cloud (static and dynamic), point cloud components (geometry and attributes), and
compression fidelity (lossless and lossy).

The “Dynamics” column in Table 10 indicates whether the method is applied to static,
dynamic, or both types of PCs, based on the tested cases in the reviewed studies. Methods
labeled with only “static” could potentially be used in dynamic scenarios but do not exploit
temporal redundancy between PCs. Conversely, only “dynamic” signifies that the model
is explicitly designed for dynamic PCs, considering temporal redundancies. The “L/LS”
(lossy/lossless) column in Table 10 indicates whether the method can be used for lossy or
lossless compression fidelity or both. In some cases, both methods can be used.
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Dynamic projection-based PC compression
V-PCC improvements (4)
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Voxelized static geometry
PCC (8)

Geometry-based PC compression (2)
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PCGCv2
SparsePCGC
PCGFormer
Geo-CNN v1
Geo-CNN v2

Octree-based static geometry
PCC (6)

OctSqueeze
VoxelDNN
MSVoxelDNN
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OctFormer
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Voxelized dynamic geometry
PCC (4)

Dynamic PC compression using PCGCv2
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Multiscale sparse representation using SparsePCGC

Octree-based dynamic
geometry PCC (6)

MuSCLE
VoxelContext-Net
OctAttention
STAEM
EHEM
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Point-based PCC (8)

RNN-based model
Autoencoder-based model
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3QNet
Patch-based PC compression
IPDAE
SPR-PCC
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Voxelized geometry and attribute
PCC (6)

JPEG Pleno Point Cloud Coding (3)
CNeT
Unicorn (2)

Attribute PCC (9)

Deep-PCAC
MNeT
SparsePCAC
ScalablePCAC
PC attribute compression using ANF
Attribute compression improvement within G-PCC (2)
Lossless point-based PC attribute compression
Dynamic lossy attribute coding point-based method

Neural radiance field
PCC (5)

NVFPCC
Learned Volumetric Attribute Compression for PC
Geometry and attribute static PC compression using NeRF
End-to-end pipeline for volumetric video compression using NeRF
ResNeRF-PCAC

Other PCC methods (6)

LASZIP (2)
Lossy LAS
LCMP (2)
MrSID

PCC

Figure 4. Map of discussed point cloud compression algorithms (PCC—point cloud compression).
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Table 10. Summary of PC compression methods and their applications: PCC—point cloud compres-
sion; S—static; D—dynamic; G—geometry; A—attribute; L/LS—lossy/lossless; VR/AR—virtual
reality/augmented reality.

PCC Group Model Dynamics PC
Type L/LS PC Application (best for)

Common G-PCC [26] S,D G,A L,LS Autonomous driving, cultural heritage

tree-based GeS TM [151] S,D G,A L,LS VR/AR (solid PCs)

Octree-based [59] S G,A LS Urban scenario

PCL [55] S G,A L,LS Not specific

CWI-PCL [152] S,D G,A L VR/AR, telepresence, “MPEG-anchor” codec

AVS-PCC [153] S,D G,A L,LS Autonomous driving, cultural heritage, VR/AR

Draco [143] S G,A L,LS VR/AR, telepresence, PC and mech compression

Projection-based Projection-based [154] S G,A L Urban scenario

Projection-based [54] S G L,LS Autonomous driving

Projection-based [155] D G,A L VR/AR

V-PCC [156] S,D G,A L,LS VR/AR, telepresence

L3C2 [27] S G,A L,LS Autonomous driving

Voxelized DSAE [157] S G L VR/AR

static ADAE [158] S G L VR/AR, buildings

geometry PCGCv1 [159] S G L VR/AR

PCGCv2 [160] S G L VR/AR

SparsePCGC [161] S G L,LS Autonomous driving, VR/AR

PCGformer [162] S G L VR/AR

Geo-CNN v1 [163] S G L VR/AR

Geo-CNN v2 [164] S G L VR/AR

Octree-based OctSqueeze [165] S G L Autonomous driving

static VoxelDNN [166] S G LS VR/AR

geometry MSVoxelDNN [167] S G LS VR/AR

SibContext [168] S G L Autonomous driving

OctFormer [169] S G L Autonomous driving, indoor scenes

Octree-Retention [170] S G L Autonomous driving, VR/AR

Voxelized Dynamic PCGCv2 [171] D G L VR/AR

dynamic D-DPCC [172] D G L VR/AR

geometry Dynamic PCC [173] D G L VR/AR

Dynamic
SparsePCGC [174] D G L,LS VR/AR

Octree-based MuSCLE [175] D G L Autonomous driving

dynamic VoxelContext-Net [176] S,D G L Autonomous driving, indoor scenes

geometry OctAttention [177] S,D G L,LS Autonomous driving, VR/AR

STAEM [178] S,D G L,LS Autonomous driving, VR/AR

EHEM [179] D G L,LS Autonomous driving

Point-based RNN-based [180] S G L Autonomous driving, urban scenario

AE-based [181] S G L Simple objects

CACTUS [182] S G L Autonomous driving

3QNet [183] S G L Autonomous driving, indoor scenes, objects

IPDAE [184] S G L Objects, indoor scenes, autonomous driving

SPR-PCC [53] S G L Autonomous driving

Pointsoup [185] S G L Indoor scenes, autonomous driving (trained only on objects)

Voxelized
geometry JPEG Pleno PCC [25] S G,A L VR/AR, buildings, cultural heritage, urban scenario

and attribute CNeT [186] S G,A LS VR/AR

Unicorn [187,188] S,D G,A L,LS VR/AR, autonomous driving, indoor scenes, buildings
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Table 10. Cont.

PCC Group Model Dynamics PC
Type L/LS PC Application (best for)

Attribute Deep-PCAC [189] S A L VR/AR, cultural heritage, buildings, indoor scenes

MNeT [190] S A L,LS VR/AR

ScalablePCAC [191] S A L VR/AR

ANF-based [192] S A L VR/AR (trained only on indoor scenes)

Model [193] S A LS Objects, indoor scenes, VR/AR, autonomous driving

Model [194] D A L VR/AR

Neural NVFPCC [195] S,D G L VR/AR

radiance LVAC [196] S A L VR/AR

field Model [197] S G,A L VR/AR, urban scenario

Model [198] D G,A L VR/AR

ResNeRF-PCAC [199] S A L VR/AR

Other PCC LASzip [56] S G,A LS LiDAR LAS PC compression

methods MrSID [200] S G,A L,LS LiDAR LAS PC compression

The next subsections describe each of the mentioned compression methods in more
detail, while the last subsection discusses PC compression applications.

4.1. Common Tree-Based Point Cloud Compression

To construct the compressed point cloud, G-PCC [26] encodes the content directly
in 3D space. Geometry and attribute data are encoded independently in G-PCC. Since
geometry is necessary for attribute coding, geometry coding is firstly applied. Coordinate
transformation, voxelization, and either an octree or a trisoup (“triangle soup”) surface
approximation are the first steps in the geometry encoding process. Finally, to attain
lower bitrates, arithmetic coding is used. Three choices are offered for attribute coding: a
lifting transform, a predicting transform, and the region-adaptive hierarchical transform
(RAHT). Upon applying one of these transforms, the coefficients undergo quantization and
arithmetical encoding. The authors of [141,201,202] contain further information regarding
G-PCC.

Other prior studies based on octree can be also found, i.e., [59], for lossless compres-
sion. The point cloud library (PCL) [55] offers an octree-based method for compressing
point clouds.

The CWI-PCL (“MPEG anchor”) codec is discussed in [152], based on the point
cloud library (PCL) [55], for dynamic PC geometry and attribute compression, and it is
suitable for 3D real-time tele-immersion. Newer methods based on G-PCC have also
been recently proposed, such as G-PCC++ [203], which addresses compression distortion
and improves quality compared to the original G-PCC. In another paper based on G-
PCC [204], the authors propose a solution to optimize the octree codec of G-PCC to be more
precise. GeS TM is also proposed [151] as a branch derived from the G-PCC test model for
compressing static and dynamic solid PCs.

Another open-source library called Draco [143], based on kd-tree, can also be used to
compress and decompress PCs, as well as 3D geometric meshes.

The authors of [205] propose an approach that investigates redundancies between the
successive frames of a dynamic PC sequence in order to reduce geometry information in a
lossless manner. It operates by gradually increasing the octree’s resolution. Experimental
results show better performance than Draco and CWI-PCL (in a lossless mode), for example,
using MVUB [136] and 8iVFB v2 [137] datasets.

AVS (Audio Video Coding Standard Workgroup of China) established a subgroup in
2019, AVS-PCC, to efficiently compress LiDAR point clouds that are both static and dynamic
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in different scenarios: autonomous driving, cultural heritage, and dynamic scenarios [153].
Recently, geometry and attribute bit rate allocations were optimized for precise bit control
by the authors of [206]. More details about AVS-PCC are provided by the authors of [201].

4.2. Projection-Based Point Cloud Compression

Using V-PCC coding [156], the PC is first divided into multiple connected regions
to generate 3D surface segments. Such 3D surface segments are called "patches" and are
subsequently projected one at a time into a 2D patch. Reducing projection issues such as
occlusions and hidden surfaces is made easier using this technique. Each 2D patch consists
of a set of images: a binary image, a geometry image (depth map), and attributes of the pro-
jected points. H.265/HEVC video compression is employed to compress the 2D sequences
with the packed patches after they are generated, although any other compression method
may also be utilized. More details about V-PCC are provided by the authors of [141,201].

Projection-based techniques were applied previously, as demonstrated by the authors
of [154], who presented a projection-based PC compression algorithm. The authors of [54]
introduce a projection-based PC compression strategy comprising four techniques: range
image conversion, PC segmentation, prediction, and coding. These methods were eval-
uated using the KITTI dataset [24]. The authors of [155] developed a new dynamic PC
compression method that combines surface reconstruction with various projection types
and bit depths with latter video compression to produce geometry and texture maps. Re-
cently, some papers also proposed improvements for V-PCC. The authors of [207] propose
voxel selection-based refining segmentation to accelerate the PC-refining segmentation
process, as well as data-adaptive patch packing to reduce occupancy map size. The au-
thors of [208] propose an efficient geometry surface coding method to improve geometry
information compression in V-PCC. The authors of [209] propose a lightweight, fully con-
nected network-based fast CU size decision during H.265/HEVC utilization for V-PCC.
The authors in [210] propose a method for segmenting dynamic point clouds based on
shape similarity and occlusion before generating patches. The experimental results indicate
that the proposed method outperforms V-PCC and some other existing methods for both
geometric and texture data.

A low-latency, low-complexity codec (L3C2) was recently proposed by MPEG [27].
L3C2 was developed for the rotating LiDAR sensor, storing points such as a coarse and
then residual 2D projection in polar coordinate systems. It can be used for both lossy and
lossless coding, as well as for geometry and attribute compression.

4.3. Voxelized Static Geometry Point Cloud Compression

The authors of [157] present geometry-based compression called DSAE (Distributed
Source AutoEncoder), which divides input data into 8 × 8 × 8 voxel blocks. These blocks
are then represented by the encoder using a deep syndrome (which corresponds to the
autoencoder’s hidden variables). The decoder then reconstructs the coded PC using coded
features (deep syndrome data) and side information from the side information encoder.
An improved version of PC geometry compression is presented by the authors of [158]
using adversarial distributed source autoencoders.

Another study [161] comprises an improved version of PCGCv1 and PCGCv2 [159,
160], called SparsePCGC. In SparsePCGC, the convolutions are only carried out on sparsely
distributed, most probably positively occupied voxels. The proposed model uses a sparse
convolution-based neural network (SparseCNN) and occupancy probability approximation
model based on SparseCNN in order to calculate the occupancy probability in a single-stage
or in a multi-stage manner. SparsePCGC can be used for both lossless and lossy geometry
compression. The proposed approach demonstrates excellent performance across a variety
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of datasets, including sparse LiDAR PC geometry (SemanticKITTI [91] for training and
testing and the Ford dataset [88] for testing) and dense object PC geometry (JPEG Pleno
dataset [135,137], Owlii dataset [138], and MVUB dataset [136]; Shapenet dataset [122] for
training), compared to G-PCC and other DL-based models while having low complexity.
The same authors propose lossy PC geometry compression in [162] using transformer
networks stacked with sparse convolutions, showing better results than G-PCC.

The authors of [163] provide a lossy PC geometry compression technique called Geo-
CNN for static point clouds that uses uniform quantization and learned convolutional
transforms. An improved version, Geo-CNN v2, is also presented [164].

4.4. Octree-Based Static Geometry Point Cloud Compression

The authors of [165] propose OctSqueeze, which initially encodes LiDAR points into
an octree, an effective data structure appropriate for PCs with sparse points. The proba-
bilities of the octree symbols are then modeled in a conditional entropy model with a tree
structure, which encodes the octree into a compact bitstream. The experimental results
are compared with Draco [143] and CWI-PCL codec [152] using two datasets, the newly
created NorthAmerica (proposed by the same authors) and SemanticKITTI [91] datasets,
showing better results for the proposed codec.

The authors of [166] demonstrate a context-adaptive arithmetic coding-based DL loss-
less compression technique for static PC geometry, called VoxelDNN. The proposed encoder
functions in a hybrid mode that combines voxel-based and octree coding. The experimental
results on ModelNet [121], MVUB [136], and 8iVFB v2 [137] show better results compared
to G-PCC v12. A multiscale approach, MSVoxelDNN, is presented in [167], speeding up
encoding and decoding times compared to VoxelDNN.

An innovative multi-level framework based on octrees is presented in [168] for
large-scale sparse and unstructured PC compression. By utilizing the context of neigh-
bors, ancestors, and siblings’ children, the framework employs a novel entropy model
to explore hierarchical dependency in an octree. Experimental results using the Se-
manticKITTI [91] and nuScenes [90] datasets show better results compared to G-PCC, Draco,
and VoxelContext-Net.

The authors of [169] propose OctFormer, an octree-based transformer compression
technique that does not rely on sibling nodes’ occupancy data. The proposed approach
builds octree node sequences using non-overlapping context windows and distributes the
outcome of a multihead self-attention operation over multiple nodes. Experiments using
the SemanticKITTI [91] and ScanNet [111] datasets show the better performance of the Oct-
Former model compared to G-PCC and OctSqueeze. VoxelContext-Net (without coordinate
refinement models, i.e., postprocessing) exhibits a similar performance to OctFormer on
the ScanNet dataset and somewhat lower performances with respect to SemanticKITTI for
higher bitrates, and performance enhancements that are several times higher are also ob-
served. OctAttention exhibits similar reconstruction quality on the SemanticKITTI dataset;
however, OctFormer’s decoding time is much faster.

The authors of [170] present the Octree-Retention model. Initially, the point cloud ob-
jects are segmented using an octree structure. Then, important features are extracted from
sibling and ancestor nodes using octree-based contextual windows. Finally, prior knowl-
edge between spatially nearby nodes can be successfully used for compression using the
Octree-Retention model, which uses retentive networks (RetNet). Experiments show better
performance compared to a) G-PCC, VoxelContext-Net, OctAttention, and OctFormer for
the SemanticKITTI [91] dataset (lossy mode) and b) G-PCC, VoxelDNN, and OctAttention
for the 8iVFB v2 [137] dataset (lossless mode).
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4.5. Voxelized Dynamic Geometry Point Cloud Compression

The authors of [171] present dynamic PC geometry compression using variational
autoencoders with temporal autoregressive hyperprior and sparse convolutions, with the
PCGCv2 model [160] used for individual PCs. Improved geometrical quality is realized
compared to the V-PCC described earlier. Using 3D motion estimation, inter-frame geome-
try PC coding, and compensation in the feature space, the authors of [172] suggest a unique
3D sparse convolution-based deep dynamic point cloud compression (D-DPCC) network
to compress and adjust the dynamic PC geometry, also showing better performance than
V-PCC inter-frame coding. This is tested on the 8iVFB v2 human body dataset [137]. The au-
thors of [174] use a multiscale sparse representation (MSR) framework from static PCs to
compress dynamic PC geometry, advancing the static SparsePCGC encoder [161]. The sug-
gested approach achieves lower bpp values in comparison to G-PCC and SparseGCPC
in a lossless mode, and it realizes BD-rate gains in the lossy mode compared to V-PCC,
SparsePCGC, PCGCv2, D-DPCC, and the methods reported by the authors of [173].

4.6. Octree-Based Dynamic Geometry Point Cloud Compression

To save storage space for LiDAR sensor data streams, the authors of [175] describe a
compression algorithm, MuSCLE, which takes advantage of spatiotemporal relationships
across many LiDAR sweeps. A new conditional entropy model is suggested to represent
the likelihood of the octree symbols by considering coarse-level geometry and geometric
and intensity information from previous sweeps. Afterwards, the complete data stream
is encoded into a compact one. The experimental results using the SemanticKITTI [91]
and NorthAmerica (proposed by the same authors) datasets show better performances
compared to the OctSqueeze, Draco, CWI-PCL, and G-PCC codecs.

The authors of [176] suggest VoxelContext-Net, a two-stage deep learning system,
for both dynamic and static point cloud compression. The suggested method combines the
advantages of voxel-based schemes and octree-based techniques by compressing octree
structured data using the voxel’s context. The experimental results using two datasets,
SemanticKITTI [91] (static and dynamic case) and ScanNet [111] (static case), compared
with OctSqueeze, G-PCC, and Draco, show better results for the proposed codec.

The authors of [177] present OctAttention, a multi-context deep learning codec that
makes use of the memory-efficient octree structure for point clouds. Through the collection
of sibling and ancestor nodes, the proposed method encodes octree symbol sequences.
Experiments that use static LiDAR PC via SemanticKITTI [91] show the better performance
of the proposed model in the lossy mode compared to VoxelContext-Net (without coordi-
nate refinement models, i.e., postprocessing) and Octsqueeze. Moreover, using dynamic
MVUB [136] and 8iVFB v2 [137] results in better outcomes in the lossless dynamic case
compared to VoxelDNN, MSVoxelDNN, G-PCC v1, and the model reported by the authors
of [205].

The authors of [178] suggest a learning-based entropy model, STAEM (Spatiotempo-
ral Attention Entropy Model), for dynamic PC compression that takes advantage of the
large-scale spatiotemporal context based on octrees. The authors provide a graph-based
feature extraction methodology that takes geometry into account in order to extract useful
features from a large-scale, informative context. Moreover, a spatiotemporal attention
mechanism is presented by the authors to identify dependencies in the large-scale context.
The experimental results with respect to SemanticKITTI [91] (static and dynamic cases)
show better results, compared to OctAttention, OctSqueeze, and G-PCC in the static case
and G-PCC and MuSCLE in the dynamic case. Moreover, using dynamic MVUB [136]
and 8iVFB v2 [137] results in better outcomes in the lossless dynamic case compared to
VoxelDNN, G-PCC, and OctAttention.
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To improve the efficiency of the octree-based auto-regressive entropy model, the au-
thors of [179] suggest an EHEM (efficient hierarchical entropy model), a hierarchical at-
tention structure that preserves the global receptive field and exhibits linear complexity
relative to the context scale. In addition, the authors provide a grouped context structure
that maintains compression efficiencies while resolving the auto-regression-related serial
decoding problem. The experimental results using the SemanticKITTI [91] and Ford [88]
datasets show better performances in the dynamic case compared to the OctAttention,
SparsePCGC, and G-PCC models while exhibiting a decoding latency that is similar to the
effective conventional G-PCC model.

The authors of [211] provide spherical coordinate-based learning PC compression
(SCP), a model-agnostic technique that takes advantage of the point clouds’ many az-
imuthal angle invariance features and circular shapes. Furthermore, in order to reduce
the reconstruction error for far-off regions inside the spherically coordinate-based octree,
the authors suggest a multi-level octree for SCP. The experimental results that use the
SemanticKITTI [91] and Ford [88] datasets show better performances when using SCP with
EHEM and OctAttention compared to the baselines, SparsePCGC, and G-PCC.

4.7. Attribute Point Cloud Compression

Several studies have dealt with PC static attribute compression. The authors of [189]
present end-to-end deep lossy point-based PC attribute compression, called Deep-PCAC,
assuming that the geometry is coded with some existing geometry codecs. A multiscale
lossless (or lossy) voxelized PC attribute coding method called MNeT is presented in [190],
assuming lossless geometry coding.

The authors of [212] present an approach called SparsePCAC that uses sparse convo-
lutions to create a variational autoencoder (VAE) framework for compressing PC attributes,
assuming lossless geometry coding. The experimental results show that SparsePCAC
performs better than G-PCC v6 and existing DL methods. The authors of [191] propose a
scalable PC attribute compression method called ScalablePCAC, assuming lossless geome-
try coding. It uses G-PCC as the base layer and a model as an enhancement layer, showing
better performances than G-PCC v14, v22, and SparsePCAC.

The authors of [192] provide a PC attribute compression strategy based on the aug-
mented normalizing flow (ANF) model, including sparse convolutions and assuming
lossless geometry coding. In comparison to VAE-based coding schemes, the normalizing
flow model’s invertibility allows for improved reconstruction. The experimental results
show better performances compared to G-PCC v14, Deep-PCAC, and SparsePCAC.

The authors of [213] present an embedded attribute PC encoding method based on
SPIHT as an alternative to the RAHT transform within G-PCC. Furthermore, the authors
of [214] propose a scalable, embedded PC attribute encoding based on a multilayer percep-
tron used with an RAHT transform within G-PCC.

The authors of [193] present lossless point-based PC attribute compression, assuming
lossless geometry compression, and this was tested using a diverse set of PCs: objects (i.e.,
ShapeNet [122]), indoor scenes (i.e., ScanNet [111]), JPEGs (i.e., 8iVFB v2 [137]), and LiDAR
(SemanticKITTI dataset [91]). Better performance was observed compared to G-PCC,
MNeT [190], and CNeT [186].

An end-to-end learned dynamic lossy attribute coding point-based method is pre-
sented in [194], assuming lossless geometry compression, which uses effective high-
dimensional convolution to capture complex inter-point correlations. The experimental
results show better results compared to region-adaptive hierarchical transform (RAHT)
attribute compression models within the G-PCC codec.
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4.8. Voxelized Geometry and Attribute Point Cloud Compression

The JPEG Pleno Point Cloud Coding codec was recently introduced in [25], and it is cur-
rently used as Verification Model V4.0 [215,216], which has joint geometry and an attribute-
coding system. Additionally, the optional DL module performs upsampling/super-
resolution to enhance the final quality of decompressed PCs. Details about the training and
test PCs for the comparison between submitted models can be found in [149]. The training
dataset consists of the ShapeNet dataset [122] and different PCs, both static and dynamic,
from JPEG or MPEG providers, while in the test dataset, there are 12 defined PCs with
three types of PCs present: solid, dense, and sparse. These represent different density
classes. Lossless static PC geometry and attribute compression models (CNeT and Context
NeTwork) were presented in [186] and tested on human-body datasets (i.e., 8iVFB v2 [137],
Owlii [138]).

Unicorn [187,188] is a newer learning-based solution designed to compress static and
dynamic, geometrical, and attribute PCs with different source characteristics (such as 8iVFB
v2 [137], Owlii [138], JPEG Pleno [135], KITTI [24], Ford [88], and Scannet [111] datasets) in
both lossy and lossless modes. It realizes significantly better performance than standard
methods such as MPEG G-PCC, V-PCC, and other learning-based approaches, delivering
state-of-the-art compression efficiency with a practical level of complexity.

4.9. Point-Based Point Cloud Compression

Several studies have been conducted that use direct PCs as inputs. A method utilizing
a recurrent neural network and residual blocks to gradually compress the data from a
single frame of 3D LiDAR is presented by the authors of [180].

Other papers have proposed autoencoders for generative purposes; however, they
may also be used for compression-related tasks. For example, the authors of [181] use au-
toencoder models to learn the compact representation of a PC, while generative adversarial
networks (GANs) (with both raw PC data and latent space data) and Gaussian mixture
models (GMMs) (with latent space data) are studied to generate novel PCs.

The authors of [182] propose a coding system called Content-Aware Compression and
Transport Using Semantics (CACTUS), which divides the original PC into independent
streams using SS with the RandLA-Net [217] architecture. The segments are then encoded
with DSAE, G-PC, or Draco compression.

A novel DL-based PC compression model is proposed in [183], called the 3D PC
Geometry Quantization Compression Network (3QNet), which can handle dense points; it
can overcome the existing point-based approaches’ robustness issue. Experiments related
to Visionair [124], ScanNet [111], and SemanticKITTI [91] show that 3QNet is capable of
achieving better compression efficiencies than CWI-PCL, G-PCC, Draco, PCGCv2, and Geo-
CNN.

The authors of [184] propose an IPDAE model (improved patch-based deep autoen-
coder), which incorporates several improvements over the patch-based point cloud com-
pression method described by the authors of [218] (inspired from PointNet [219]). These
consist of octree coding for centroid point sampling, a learnable context model for entropy
coding, and an integrated training and compression procedure. The experimental results
using ModelNet [121], ShapeNet [122], and S3DIS [109] show better outcomes compared to
G-PCC, PCGCv2, Geo-CNN, and Geo-CNN v2.

The authors of [53] propose scene-aware LiDAR PC geometry compression using
semantically prior representation (SPR-PCC) by projecting PCs to 2D images, segmenting
projection images, and eventually removing moving objects from a set of projected frames
(depending on the final application task). The proposed solution shows better results
compared to G-PCC v14 and PCL using the KITTI dataset [24].
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The authors of [185] present Pointsoup, an effective learning-based geometry codec
that simultaneously realizes both very low decoding latencies and high performances.
A point model-based approach that uses dilated window-based entropy modeling and an
attention-based encoder inspired by the traditional Trisoup codec was introduced. The ex-
perimental results using S3DIS [109], ScanNet [111], and SemanticKITTI [91]—compared to
G-PCC v23 (octree and trisoup), OctAttention, IPDAE, and 3QNet—showed better results
for the proposed codec.

4.10. Neural Radiance Field Point Cloud Compression

The novel-view synthesis approach NeRF (neural radiance field) [220], which is also
applicable to PC compression, is covered in this subsection. NeRF was first proposed to
reconstruct a 3D scene from sparse 2D representations, i.e., to synthesize novel views of a
scene. NeRF approaches can be classified into three types based on how they depict the
scenes: implicit, explicit, and hybrid [221]. Explicit and hybrid radiance field representa-
tions alleviate the slowness of implicit representations by including explicit data structures
(such as 2D/3D grids or 3D points) for local feature encoding. The same study introduces
binary radiance fields (BiRFs), a storage-efficient hybrid model of radiance fields that uses
binary feature encoding. Another storage-efficient NeRF method was recently proposed by
the authors of [222], called context-based NeRF compression (CNC), following the design
of state-of-the-art binary radiance field (BiRF) compression. The experimental results on
the Synthetic-NeRF (synthetic) [220] and Tanks and Temples (real) [223] datasets showed
the better performance of the proposed CNC method compared to the BiRF.

PC geometry compression using NeRF was presented by the authors of [195], called
NVFPCC, for both static and dynamic PCs. The authors of [196] present learned volumetric
attribute compression (LVAC) for PCs using coordinate-based networks. The authors
of [197] present a unified approach for geometry and attribute static PC compression using
NeRF. Two networks were used for the geometry and attribute components. The voxelized
body dataset from the authors of [137] were used to carry out comparisons with existing
solutions, namely, the G-PCC standard and NVFPCC, showing better performances for
the proposed solution. PCs from the Semantic3D dataset [80] were also compared to those
reported by the authors of [160,162], showing better performances when using geometry
quality assessments. The authors of [198] propose an end-to-end pipeline for volumetric
video compression utilizing neural-based representation. Three-dimensional dynamic
content is represented as a sequence of NeRFs, which are converted from explicit to neural
representations. The experimental results show better performances than G-PCC and
Draco, and similar performances are observed relative to the V-PCC coding solutions using
the 8iVFB v2 [137] and 8iVSLF [139] datasets. The authors of [199] present a new method
for point cloud attribute compression called residual neural radiance fields for point cloud
attribute coding (ResNeRF-PCAC). Tests on the 8iVFB v2 [137] dataset show better results
than G-PCC; the region-adaptive hierarchical transform (RAHT); and pred/lift schemes for
attribute coding, v14 and v21.

4.11. Other Point Cloud Compression Methods

In this subsection, we explore several additional compression methods that are not
addressed in the previously discussed subsections.

The lossless compression scheme for LiDAR in the binary LAS (LASer) data format,
LAZ (LASzip), is presented by the authors of [56,224], achieving 7-20% of the uncompressed
size. The LASzip compressor is lossless, non-progressive, streaming, and order-preserving,
and it provides random access. Another lossless LiDAR PC compression method, the LAS
compression coder (LCMP), was presented by the authors of [57,225], with only 10–20% of
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their original size. Lossy LAS file compression using uniform space division was presented
by the authors of [58]. A commercially available compression format multi-resolution
seamless image database (MrSID) is also available for images and LAS LiDAR files for both
lossless and lossy compression [200].

4.12. Point Cloud Compression Applications

In this subsection, we discuss different PC compression applications, mostly based
on the employed datasets, as described in Table 10. The most common PC applications
comprise virtual reality/augmented reality (VR/AR) with MVUB [136], 8iVFB v2 [137],
and Owlii [138] datasets, as well as autonomous driving with the KITTI [24] and Se-
manticKITTI [91] datasets. For VR/AR applications, trained datasets are usually sampled
objects from the ModelNet [121] and ShapeNet [122] datasets, which means that those mod-
els should also work for these datasets. In the case of the ANF-based model for attribute
compression [192] and Pointsoup for geometry compression [185], the dataset used in
model training is mentioned because its type is completely different from the test datasets;
this is carried out to test their generalization abilities in compressing different PC types.

Less prevalent tested datasets include indoor scene datasets (usually ScanNet [111])
and urban scenario datasets (i.e., Semantic3D [80], 3DTK [79]), used only in a few pro-
posed compression algorithms. Regarding the datasets with object PCs, the sampled
ModelNet [121] and ShapeNet [122] datasets are usually used to train DL-based models.

In non-DL based models, standardized codecs such as G-PCC [26], V-PCC [156], and
AVS-PCC [153] are versatile, supporting both static and dynamic PCs with lossless and lossy
options and several application types. Specialized compression tools such as LASzip [56]
and MrSID [200] focus on LiDAR PC compression. Draco [143] can be used in telepresence
and VR/AR due to efficient geometry and attribute encoding. The newly proposed L3C2
codec can be used in autonomous driving.

From Table 10, it can also be observed that DL-based models combining geometry
and attribute compression are less common compared to geometry-only models. Notable
examples include lossless CNeT [186], lossy JPEG Pleno PCC [25], and lossy models [197]
for static PCs, as well as lossy models [198] for dynamic PCs.

It is also notable that some DL-based methods either omit the exact G-PCC version
used for comparison or rely on older versions available at the time of evaluation. This can
be attributed to the rapid development of the G-PCC and V-PCC codecs, with the latest
versions possibly not being publicly accessible. Additionally, comparisons often focus only
on similar codec types, overlooking other DL-based methods. Since different codecs are
tailored to specific PC types, as indicated by the datasets they use (e.g., dense PCs such as
8iVFB v2 [137] or sparse PCs such as SemanticKITTI [91]), it is essential to consider and
specify the exact PC type when comparing methods against the G-PCC codec.

A summary of the advantages and disadvantages of each PC compression group
described earlier is provided in Table 11.
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Table 11. Summary of advantages and disadvantages of reviewed PC compression methods (PCC—
point cloud compression).

PCC Group Advantages Disadvantages

Common tree-based PCC

• General category of many older and
newer tree-based PCC models

• G-PCC represents newer standardized
model [26] with rapid development

• Depends on specific model

Projection-based PCC

• General category of many older and
newer projection-based PCC models

• V-PCC represents newer standardized
model [156] with rapid development

• Depends on specific model

Voxelized static geometry PCC • Better suited for dense PCs, i.e., in VR/AR
applications

• Works only for geometry PCs
• Temporal redundancies are not taken into

account
• Input PC needs to be voxelized

Octree-based static geometry PCC • Better suited for large-scale sparse PCs, i.e,
in autonomous driving applications

• Works only for geometry PCs
• Temporal redundancies are not taken into

account
• Decoding complexity

Voxelized dynamic geometry PCC • Better suited for dense PCs, i.e., in VR/AR
applications

• Works only for geometry PCs
• Input PC needs to be voxelized

Octree-based dynamic geometry PCC • Better suited for large-scale sparse PCs,
i.e., in autonomous driving applications

• Works only for geometry PCs
• Decoding complexity

Attribute PCC • In some cases, can be used instead or on
top of existing solutions such as G-PCC

• Usually, lossless geometry compression is
assumed

Voxelized geometry and attribute PCC

• Newer solutions usually based on deep
learning models, as alternative to stan-
dardized codecs such as G-PCC and V-
PCC

• Training data have to be carefully chosen
(i.e., depending on bit depth and motion
for dynamic PCs)

Point-based PCC
• Input PC does not have to be voxelized
• Generally works better for unevenly dis-

tributed and sparse point clouds
• Complexity depends on number of points

NeRF PCC

• Any volumetric input data can be used
• Images rendered with NeRF do not have

visual artifacts due to PCs’ discrete nature
• Can be used to compress plenoptic PCs

• Slower training time
• Fewer plenoptic PC datasets

Other PCC methods • Specific use cases for LiDAR PCC with
specific type of PCC algorithm

• Slower loading performance using com-
pressed LAZ compared to uncompressed
LAS, but also depends on software used
[226]

4.13. Point Cloud Compression Limitations and Research Trends

As summarized in Table 11, the PC compression methods reviewed have some draw-
backs. In general, the compression efficiency in lossy modes is still not very high, especially
when high fidelity (i.e., low geometrical distortion) is needed, as in the case of remote sens-
ing applications involving some metrology operations. At low and medium coding rates
(i.e., low bits per point), well-established methods based on geometry processing such as
octree-decomposition can introduce point position errors that are incompatible with appli-
cations in which accurate measurements are to be carried out from decoded/reconstructed
point clouds. To address this problem, research is ongoing with respect to the compression
of point clouds in order to attain near-lossless performance where the distortion allowed
is measured via the min–max criteria (i.e., ensuring bounded maximum positional errors
computed over all point cloud points) instead of the currently used average point-to-point
or point-to-surface errors. Deep-learning-based solutions, despite showing promising
performance and, in some cases, surpassing that of alternative solutions, also exhibit spe-
cific problems, such as the introduction of points representing artificial structures during
reconstruction/decompression, possibly impacting the operation of downstream process-
ing. Learning-based solutions also suffer from complexity ails, usually requiring fast and
energy-expensive parallel processing hardware for acceptable coding and decoding time-
complexity, somewhat limiting the contexts in which they can be deployed. Concerning
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scalability and random access functionalities, which are necessary, for instance, to decom-
press and render the representations of compressed 3D point clouds at different scales
and/or in different parts of the encoded point clouds without decoding the entire point
cloud, in general, all methods developed thus far only support these functionalities in a
limited fashion. Most methods, both deep-learning-based and non-deep-learning-based,
resort to block partitioning and encoding in order to provide some sort of random access,
allowing the independent decoding of each block. In the case of scalability, some com-
pression methods such as MPEG G-PCC and V-PCC support some scalability, but most
deep-learning-based methods have no provisions for scalable coding. A notable exception
is the method described by the authors of [187], which can support scalable encoding and
decoding. Thus far, most research on point cloud compression has focused on the efficient
representation of geometrical information, which is, without a doubt, the most important
component for most remote sensing applications. However, attribute information that can
represent surface temperatures, surface reflectances, etc., is also very important and quite
hard to represent efficiently. Recognizing this, several research groups (e.g., those reported
in [188]) and standard organizations such as ISO/IEC JPEG and MPEG are working on this
side of the point cloud compression problem. It is expected that the results of these research
efforts will translate into more compact compressed 3D point clouds that are easier to store
and process, with advantages for remote sensing applications and processing workflows.

5. Conclusions and Future Research
This article is organized into three main sections: a meta-review of review papers

on the RS application of point clouds (Section 2), datasets commonly used in RS-related
algorithm research and development (Section 3), and PC compression methods (Section 4).

Section 2 surveys a selection of review articles about the applications of PC technology
in RS-related contexts, with articles divided into three groups: general PC-related, spe-
cific RS-related, and agriculture-related applications. The first group of articles cover PC
acquisition and processing tasks, such as scene understanding, compression, segmenta-
tion, registration, multispectral applications, and multimodal data fusion. Some of these
processing tasks are not exclusive to remote sensing and are also used in, e.g., computer
vision applications relative to several problems. The second and third groups of this ar-
ticle are more specifically related to RS tasks, with the third group further divided for
agriculture-related applications. Tables 1–3 summarize each discussed article. The range of
applications covered in the section, as well as the number of studies selected for review,
shows that point clouds are used in many application scenarios that fall under the umbrella
of remote sensing.

Section 3 provides a list of datasets (point clouds and related) used for the research
of PC compression methods. Section 4, as well as research in other areas, refers to the
following topics: autonomous vehicle navigation (outdoor- and vehicle-related contexts),
robotics and interior mapping (indoor scenarios), precision agriculture (agriculture-related
contexts), and other application-specific datasets for visual quality evaluations and related
objective quality measures. Many of the mentioned datasets are also used in PC object
detection, as well as semantic, instance, and panoptic segmentation. Datasets containing
2D RGB (+depth) images are also suitable for image segmentation tasks and for the fusion
of 2D and 3D data. More detailed information regarding each dataset can be found in
Tables 4–9 and the articles referenced in those tables. Overall, this section shows that there
is now a reasonably large set of 3D point cloud and related dataset formats, and in many
cases, they are accompanied by application-specific annotations, which are very useful for
anyone wanting to carry out research on remote sensing problems.
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Section 4 provides information regarding different PC compression methodologies
that researchers have developed; these methodologies aim to provide efficient point cloud
data transmission, handling, and storage that are usable in remote sensing applications.
The methods surveyed are divided into several categories: common tree-based, projection-
based, and other methods. The methods are able to process voxelized or unprocessed
real coordinate point clouds in both static or dynamic scenarios. Besides PC geometry
component compression, some methods also address attribute compression. Emerging rep-
resentation formats such as neural radiance fields and Gaussian splattings are also covered.
Several standardized point cloud coding methodologies, such as MPEG’s geometry-based
(G-PCC) and video-based (V-PCC) codecs, and recent DL-based models, such as the JPEG
Pleno Point Cloud Coding codec, are included in this survey.

As point cloud technology evolves, it is expected that new datasets, algorithms,
and hardware improvements will further enhance its application in remote sensing tech-
nologies and systems. Future research should concentrate on creating even more effective
compression techniques that balance data volume and representation fidelity, in addition
to investigating how deep learning models may help optimize point cloud data process-
ing. Compression algorithms for both geometry and attribute data (potentially utilizing
radiance-field synthesis) could be explored, considering different application contexts such
as urban scenarios, indoor scenes, autonomous driving on water surfaces (i.e., the Wa-
terScenes dataset [107]), and agriculture-related environments. Both lossy and lossless
compression methods can also be explored. New algorithms could be tested using both real
and synthetic datasets created via generative tools, such as Objaverse-XL [128], with respect
to both real and synthetic objects. Due to their flexibility and economy of representation,
point clouds will continue to be essential for improving remote sensing capabilities and
applications as they are used to tackle the issues identified in this survey.
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Abbreviations
The following abbreviations are used in this manuscript:

PC Point cloud
PCC Point cloud compression
RS Remote sensing
LiDAR Light detection and ranging
RADAR Radio detection and ranging
SAR Synthetic aperture RADAR
SONAR Sound detection and ranging
DL Deep learning
NeRF Neural radiance field
SS Semantic segmentation
SfM Structure from motion
RGB-D RGB plus depth
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MLS Mobile laser scanner
PCSS Point cloud semantic segmentation
UAV Unmanned aerial vehicle
UAS Unmanned aircraft system
ALS Aerial laser scanner
TLS Terrestrial laser scanner
LAI Leaf area index
fCover Vegetation cover fraction
CNN Convolutional neural network
IS Instance segmentation
PS Panoptic segmentation
VR/AR Virtual reality/augmented reality
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