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Abstract
This article proposes a new method for subjective 3D video quality assessment based on crowdsourced workers—Crowd3D. 
The limitations of traditional laboratory-based grade collection procedures are outlined, and their solution through the use of 
a crowd-based approach is described. Several conceptual and technical requirements of crowd-based 3D video quality assess-
ment methods are identified and the solutions adopted described in detail. The system built takes the form of a web-based 
platform that supports 3D video monitors, and orchestrates the entire process of observer validation, content presentation 
and quality, depth, and comfort grade recording in a remote database. The crowdsourced subjective 3D quality assessment 
system uses as source contents a set of 3D video and grades database assembled earlier in a laboratory setting. To evaluate 
the validity of the crowd-based approach, the grades gathered using the crowdsourced system were analysed and compared 
to a set of grades obtained in laboratory settings using the same data set. Results show that it is possible to obtain Pearson’s 
and Spearman’s correlation up to 0.95 for quality Difference Mean Opinion Score and 0.96 for quality Mean Opinion Score, 
when comparing with laboratory grades. Apart from the present study, the 3D video quality assessment platform proposed 
can be used with advantage for further related research activities, reducing the time and cost compared to the traditional 
laboratory-based quality assessments.
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1  Introduction

Research on 2D and 3D video processing, coding, and qual-
ity modelling often requires access to video clips annotated 
with grades representing human opinion of their qual-
ity. Usually, these grade data sets are compiled by enroll-
ing subjects to participate in video quality assessments 
campaigns, during which they watch a number of video 
sequences and rate their quality on either an absolute or 
a relative scale following one of the protocols defined in 

specialized recommendations. One such recommendation 
is ITU-R BT.500-13 [1], with a scope of application lim-
ited to 2D video contents. An extension of this protocol to 
stereoscopic 3DTV systems has been developed by ITU 
and is available as recommendation ITU-R BT.2021 [2], to 
which three other 3D video-related recommendations have 
been added recently; ITU-R P.914 (Display requirements for 
3D video quality assessment) [3], ITU-R P.915 (Subjective 
assessment methods for 3D video quality) [4], and ITU-R 
P.916 (information and guidelines for assessing and mini-
mizing visual discomfort and visual fatigue from 3D video) 
[5]. In subjective 2D video quality assessment, the observ-
ers rate video on a single dimension that quantifies quality 
[6, 7], but, in subjective 3D video quality assessment, other 
quality indicators specific to 3D such as depth quality and 
visual comfort have to be rated as well. That means that, 
for each 3D video sequence, test subjects have to indicate 
three different grades, as opposed to one in the 2D video 
case, thus making the evaluation procedure longer and more 
cumbersome, and more prone to inter- and intra-observer 
variability. To improve the reliability of the quality grades 
collected in subjective 3D video quality assessments, the test 
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subjects need to pass a set of stereoscopic vision screenings, 
alongside colour and vision acuity tests, thus accruing to the 
logistic complexities of 3D video evaluations and their costs. 
In the past, these constraints have put practical limits on 3D 
video quality subjective quality grade collection, both to the 
amount of grade data collected as wells as to diversity of the 
grade sources, most times limited to academic and industrial 
research-laboratory settings.

Recent developments on crowdsourced image [8, 9] and 
video quality assessment [10] and the availability of crowd-
sourcing platforms such as Microworkers [11] and Ama-
zon Mechanical Turk [12] have provided an alternative to 
laboratory-based quality evaluations. Using crowdsourced 
evaluators, it is now possible to have 3D video quality 
assessments done by many observers at multiple locations, 
extending the evaluators recruitment domain and, thus, solv-
ing one of the problems of this type of studies, the assembly 
of a diversified medium to large set of graders. However, 
the geographical distribution of observers together with the 
diversity of their backgrounds and other specificities of this 
type of grade collection modus introduce several new techni-
cal and conceptual challenges that need to be solved before 
crowdsourced 3D video quality assessment campaigns are 
effective and their results trustworthy.

In the following sections, these challenges will be identi-
fied and corresponding solutions will be described, resulting 
in a set of procedures and tools which form the proposed 
framework of the new method for crowdsourced subjec-
tive 3D video quality assessment—Crowd3D. The system 
described was developed as a web-based platform that con-
trols several stages of the evaluation sessions performed 
remotely by (crowd) workers, including several types of 
verifications, and, finally, the grade collection.

The system proposed was used to gather subjective qual-
ity ratings for 3D video sequences that were prepared for and 
used in a previous study done in a laboratory setting, which 
resulted in a grade annotated 3D video database, 3DVCL@
FER, as reported in [13]. The quality, depth, and comfort 
grades collected using the proposed crowd-based platform 
were compared to the laboratory-based grades. The grades 
obtained were subjected to extensive analysis which enabled 
drawing conclusions about the feasibility and reliability of 
the procedure proposed. It will be shown that correlation 
between overall quality scores with laboratory evaluation 
will be high, while depth and comfort scores will be some-
what lower. One of the possible problems may be lower 
number of overall evaluations per video sequence—around 
34.8 (in crowdsourced environment, usually, it is possible to 
quickly collect several hundred grades or samples), because, 
nowadays, people still do not usually have 3D equipment. 
Still, this was enough for quality grades, but not for comfort 
or depth grades. Another problem may be different envi-
ronmental settings that have influence on comfort ratings, 

while, e.g., different distances from monitors may have dif-
ferent perceived depth, and those factors cannot be strictly 
controlled in crowdsourced evaluation.

The remainder of the text is organized as follows. Sec-
tion 2 summarizes the previous works on related themes. 
The details about the web-based application and test setup 
used for this crowdsourced 3D video quality assessment 
project are exposed in Sect. 3. Section 4 reports on the 
individual quality grades collected and a grade comparison 
study between crowdsourced and laboratory-based sub-
jective 3D video quality assessments. Section 5 discusses 
about results obtained from crowdsourced experiment, as 
well as about comparisons with results from other subjec-
tive 3D video quality assessments. Finally, Sect. 6 presents 
our conclusions.

2 � Related work

To the authors’ best knowledge, there are no published 
results on crowdsourced 3D video quality assessment 
where the assessments were conducted using 3D displays 
(3D monitors or 3D TV sets), although there is some work 
concerned with crowd-based quality assessment of multi-
view video plus depth coding like [14], where Hanhart et al. 
investigated two possible approaches to crowd-based quality 
assessment of multiview video plus depth (MVD) content 
presented on 2D displays. Another work used subjective 3D 
video quality assessments to build the 3DVCL@FER [13] 
3D video database annotated with quality grades. Despite 
its attractiveness as a way to quickly gather large numbers 
of quality grades at low cost, crowdsourced 3D video qual-
ity assessment faces a number of technical and conceptual 
challenges as described later.

Hoßfeld et al. [15, 16] have shown that a two-stage design 
can assemble a pseudo-reliable user pool with specific char-
acteristics or user equipment. Stage one should be very short 
and would serve only to select users that have normal ste-
reoscopic vision (i.e., they are able to perceive depth) and a 
3D monitor or TV set. Only the participants who pass stage 
one should be allowed to take part in stage two. In stage 
two, the actual crowdsourced subjective 3D video quality 
assessment is done.

In [17], experiments are described that test “perceived 
depth”, “perceived image quality” and “perceived natural-
ness” in images with different levels of blur and different 
depth levels. Conclusion was that naturalness incorporates 
both blur level as well as depth level, while image quality 
does not include depth level, and thus, naturalness is a more 
promising concept.

In [18], authors proposed 3D Quality Model based on 
weighted sum of perceived image quality and perceived 
depth. Adding blur or noise may affect both perceived image 
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quality and perceived depth. In [19], authors describe visual 
discomfort in stereoscopic displays and different factors that 
can affect it: excessive binocular disparity, accommodation 
and convergence mismatch, (un)comfortable viewing dis-
tances, and stereoscopic distortions.

Comparison between different subjective 3D video qual-
ity evaluations has been presented in [14] (between crowd-
based and lab-based test; authors compared MOS quality 
scores, using video sequences coded with MVC+D and 
3D-AVC, with different bitrate, and converted to different 
synthesized views for subjective test), [20] (three different 
laboratories; similar setup for tests as in [14]) and [21] (three 
different laboratories; authors tested ten degradation types 
from NAMAS1-COSPAD data set [22]). In [23], authors car-
ried an experiment to determine the impact of certain video 
characteristics such as fast in-scene motion, large changes 
in disparity, and depth discontinuities caused by subtitles, 
in terms of visual comfort via different measurement meth-
ods. An analysis of the continuous assessment scores (tested 
sequences were two 3D movies of approximately 15 min 
each, both with and without subtitles) revealed that visual 
comfort could be predicted from a linear combination of 
these video characteristics per scene.

In [24], authors presented a new method to quantify stere-
oscopic visual performance at different base disparity levels 
inside and outside the zone of comfortable viewing, which 
could allow to adjust individual zones of comfortable view-
ing (e.g., using this approach, users could automatically and 
individually adjust settings for a 3D television consumption).

In [25], authors presented a novel framework for jointly 
modelling QoE and user behavior, where user behavior is 
treated as one of the framework dimensions along with sys-
tem performance and user state. It can be used for the tra-
ditional QoE, user behavior, charging and pricing models 
over churn issues, and the impact of user characteristics, 
problems related to energy consumption etc.

3 � Application design and test setup

3.1 � Problem description and challenges

Although crowdsourced tests generally reduce the time and 
cost compared to the traditional laboratory-based quality 
assessments, crowdsourced 3D video quality assessment 
faces different technical and conceptual challenges. The 
main technical challenges are Internet access bandwidth and 
quality constraints, support of user equipment to display the 
required stimuli, and lack of information about the viewing 
environment where the crowdsourced subjective 3D video 
quality assessment takes place.

The second important challenge is the support of differ-
ent types of user equipment to display the required stimuli. 

This challenge has implications that translate into more 
demanding hardware and software requirements. On the 
hardware side, the most important requirement is that the 
users must have a 3D monitor or 3D TV set capable of 
displaying the 3D video sequences. On the software side, 
because the availability of high-end user equipment cannot 
be readily assumed, optimisation for smooth execution on 
older computers is needed.

Another important challenge is the trustworthiness of 
the user and user data. Commercial crowdsourcing plat-
forms such as Microworkers [11] and Amazon Mechani-
cal Turk [12] have a large pool of diverse workers and 
implement a worker rating scheme based on the success 
rate of finished jobs. The existence of dishonest users on 
the commercial crowdsourcing platforms means that addi-
tional reliability mechanisms (later called ARMs) need to 
be implemented. Those ARMs can be implemented before, 
during, and after the crowdsourced subjective 3D video 
quality assessment test campaign. ARMs can be used dur-
ing the quality assessment sessions to identify unreliable 
users and dismiss their results. After this step, a crowd-
sourced subjective 3D video quality assessment test cam-
paign can be conducted including the application of the 
recommended statistical analysis, as will be described later 
on. Because of the requirement of access to a 3D monitor 
or 3D TV set, a two-stage crowdsourcing test campaign 
is preferred.

To make the system usable by a large number of crowd-
workers, it should be designed to use standard browsers, not 
requiring any special plugins. The content to be evaluated 
should be easy to download, using near-lossless compres-
sion and should be pre-stored in the browsers cache to avoid 
playback interruptions. For the purpose of our research on 
crowdsourced subjective 3D video quality assessment, a 
web-based application was developed following the tenets 
enunciated in the previous section. Although, the applica-
tion could be run in either Google Chrome [26] or Mozilla 
Firefox browser [27], for the crowdsourced assessments, 
Google Chrome and x264 encoded video sequences were 
used, as this test setup does not require any additional soft-
ware installation from the user side. Because of the com-
plexity of the crowdsourced subjective 3D video quality 
assessment procedure, dedicated test server in Portugal was 
used on high-speed network, running Apache v2.4.23 and 
PHP v5.5.38.

All the additional reliability mechanisms (ARMs) imple-
mented in the web-based application are listed below:

(a)	 Forcing the browser into full-screen mode during the 
whole assessment procedure. If the user tries to exit the 
full-screen mode, an error message is displayed, the test 
procedure is stopped, and the start page is loaded;

(b)	 GUI is rendered in 3D mode;
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(c)	 To prevent the hasty scoring, the users are not allowed 
to submit a score before a predetermined amount of 
observation time has elapsed; this guard time was set 
to 5 s;

(d)	 Application-level monitoring of the results, web 
browser type/version, screen resolution, and operating 
system are used. The default rating count and average 
grades of original 3D video sequences results are moni-
tored. If the users choose more than five default ratings 
(they do not move the rating sliders for 5 3D video 
sequences), they are marked as “potential cheater” in 
the results database. They are marked the same way 
if the average grades of original 3D video sequences 
are below 1.5. Default position was set at the middle 
of the scale. Setting it at either end of the scale or at 
an invalid position (which would then start at 0 when 
moved) could bias the scores of the observers towards 
the ends of the scale;

(e)	 Context and demographic monitoring are implemented 
through a questionnaire where users are asked to pro-
vide information about their 3D monitor type, illumina-
tion type, time of day, age, gender, and country. Most 
of the questions are implemented through drop-down 
menus, so that the users do not spend a lot of time filing 
out the questionnaire. Those questions are answered 
in 2D mode, prior starting the application in 3D mode 
(switching test device to 3D mode);

(f)	 In addition, at the end of the test, the user is asked 
several additional consistency questions: type of web 
browser used, their Internet download speed, number 
of sequences with frame freezing, if their monitor/TV 
dropped out of 3D mode, and location (country) where 
the test took place and whether they have normal depth 
acuity.

(g)	 Workers were required to provide some information 
that provides reasonable proof of them having finished 
the evaluations through the use of crowdsourcing plat-
form interface pages. One such piece of information 
is the brand and model type of their 3D display which 
have to match the brand and model indicated on the 
test site. For the same reason, the user has to submit a 
picture of the test setup, showing (in the same picture) 
the 3D monitor/3D TV set, the 3D glasses used, and the 
test website displayed on the screen. This was one final 
ARM which was implemented on the crowdsourcing 
platform interface and it was ensured that the test web-
site is displayed correctly on the user 3D monitor/3D 
TV set and that all the necessary and right equipment 
had been used. If the users provided unsatisfactory 
data for this last verification (for example, the picture 
showed a wrong type of 3D glasses, or did not show 
the test site loaded on screen), then their results were 

dismissed, their tasks were rated unsuccessful, and they 
were not paid.

3.2 � Technical challenges

Conceptual requirements to be met by the proposed frame-
work of the Crowd3D method are: two-stage design, first two 
sequences used as training, maximum duration of assess-
ment about 20 min, additional ARMs listed earlier, and opti-
misation to run on slower computers (it was tested using 
processor Intel Core2 Duo E8400 @ 3.00 GHz).

Traditional test procedures such as ITU-R BT.500-13 [1] 
and ITU-R BT.2021 [2] can be modified in accordance with 
the technical and conceptual requirements of the Crowd3D 
method and adapted for use in crowdsourced subjective 3D 
video quality assessment. In this way, a common evalua-
tion ground is established, allowing fair comparison of 
the results obtained with the Crowd3D method with those 
obtained using the traditional laboratory-based subjective 
3D video quality assessment methods. In the current work, 
this comparison quantified the degree of agreement between 
the two sets of grades and led to some conclusions about the 
reliability of the crowd-based quality grades.

The commercial crowdsourcing platform Microworkers 
[11] was chosen for conducting the desired crowdsourced 3D 
video quality assessment. This platform was chosen because 
of its flexibility in campaign design (usage of the dedicated 
test server, which set up in a laboratory of the research insti-
tute Instituto de Telecomunicações in Portugal).

We used multiple design voting scale (gathered grades 
for quality, depth, and comfort scores using three voting 
scales simultaneously, Fig. 1). According to ITU P.915 [4], 
single or multiple questionnaire is possible. In case of mul-
tiple questions, it is advisable to consult generally available 
information from psychology. It would take more time to 
gather all grades in that case, which may not be suitable for 
crowdsourced environment. Before each evaluation starts, 
it has been explained to the observers that: “For picture 
quality and depth quality grade 0 represents bad, while 5 
represents excellent. For visual comfort, grade 0 represents 

Fig. 1   Voting scale used in 3D crowdsourced assessment
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extremely uncomfortable, while 5 represents very comforta-
ble”. Grades have been collected using three sliders in range 
0–5, with step 0.1. Voting scale is presented in Fig. 1, in 2D 
mode, in 3D mode, it would be seen as one object (consist-
ing of three scales for image, depth and comfort grades). 
Although it was possible to use discrete 5-point Likert-based 
voting scale, we used continuous grading scale to have the 
same type of the voting mechanism like in laboratory tests 
from [13]. In addition, using such type of grading, we could 
implement safety checks regarding detection of potential 
cheaters: if users choose more than five default ratings (they 
do not move the rating sliders for 5 3D video sequences from 
middle grade, 2.5) or if the average grades of original 3D 
video sequences was below 1.5. It might be more difficult to 
choose those boundaries in discrete type of grading, espe-
cially using five points.

3.3 � Crowd3D system description, implementation, 
and video sequence description

Test campaign of Crowd3D consists of two stages. Both 
stages of our crowdsourced 3D video quality assessment can 
be accessed and run online [28, 29], together with instruc-
tions given to the observers. Stage one was used to assemble 
a group of pseudo-reliable participants where the screening 
criterion used was normal depth perception and possession 
of either a 3D monitor or 3D TV set. Only the participants 
who passed stage one were allowed to take part in stage two. 
Stage one screening used only five 3D video sequences. In 
related work [8], the authors did not test the subjects for 
vision impairments, instead instructed the workers to use 
whatever corrective lenses they used in their day-to-day 
life, during the study. Later, in the survey, the subjects were 
asked if they usually wore corrective lenses and whether 
they wore the lenses while participating in the study. The 
ratings given by those subjects who were not wearing their 
corrective lenses they were otherwise supposed to wear were 
rejected. In our work, workers’ vision was tested through 
questionnaires. If the workers stated that they do not have 
normal depth acuity, their results were discarded.

Stage two used four original 3D video sequences and 21 
corresponding degraded 3D video sequences. This results 
in 21*4 = 84 degraded sequences, plus 4 original sequences, 
equals 88 overall 3D video sequences to give subjective 
grade.

The 88 sequences (some of them were used in stage one 
also) were compressed at a high-quality setting, using the 
×264 encoder (in.mp4 container, left + right view) with 
constant rate factor (CRF) 10, to make them playable in the 
Chrome browser. In addition, to validate the test setup and 
verify that the compression used to permit running the test 
over the Internet did not negatively impact the quality scores, 
PSNR and SSIM were calculated with the uncompressed 

sequence as reference (median PSNR = 50.9415 dB, median 
SSIM = 0.9959), which show that the H.264/AVC com-
pressed video sequences have near-lossless quality and so 
the compression used will not bias the scores collected from 
the evaluation sessions [13].

At the beginning of each evaluation in stage two, two 
additional sequences were used intended to serve as an intro-
duction (reminder) to the observers of the grading system 
and assessment procedure (those grades were discarded in 
later analysis). The four original 3D stereo video sequences 
are available for download from [30]: Basketball training, 
Hall, News report, and Soccer. These four sequences are in 
full HD stereo format, with 25 fps frame rate and are 16 s 
long. Detailed information about all the sequences used can 
be found in [22]. The left view of the first frame of each 
original sequence is presented in Fig. 2, and the spatial and 
temporal activity indices of those sequences, computed as 
stated in ITU-T recommendation P.910 [31], are plotted in 
Fig. 3.

The activity indices plot shows that the sequences are 
very diverse in terms of their spatial and temporal character-
istics, ensuring that the chosen sequences are a representa-
tive sample of the type of contents found in real applications.

The degradations that were tested in the subjective evalu-
ation are explained in detail in 3DVCL@FER [13]. A pal-
ette of 21 degradations was used, including: compression 
related degradations (H.264/AVC, HEVC)—7 types, tem-
poral degradations—4 types, incorrect camera settings—5 
types, resizing, packet losses, 2D view, compressed 2D 
view, 2D-to-*3D conversion. Degradation number ‘5’ from 
3DVCL@FER—difference in gamma between left and right 
view—was not tested here due to the possibility of dropping 
out from 3D mode in some TV sets (and this cannot be con-
trolled in crowdsource evaluations).

Crowd3D page [29] for the second-stage grade collection 
is also shown in Fig. 4.

3.4 � Crowd3D test setup and grade collection: stage 
two

Because of the Google Chrome cache size constraints and 
the large number of 3D video sequences used in this quality 
measurement tasks, the content to be evaluated was divided 
into four equal parts, which were preloaded in the Chrome 
cache. Each part of this data set had a size of approximately 
1.3 GB, which is smaller than the maximum allowable size 
of the Google Chrome cache (1.8 GB). The total time for 
conducting one part of our crowdsourced 3D video quality 
assessment was around 15 min, not including the preloading 
time that depends on the user’s Internet access speed. Fur-
thermore, each worker was allowed to participate in several 
crowdsourced 3D video quality assessment sessions, with a 
maximum of two sessions per day. In each part, observers 
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evaluated: 4 original sequences, 21 degraded sequences 
(with different content, e.g., 5–6 degradation types per 
sequence), plus 2 sequences at the beginning used for intro-
duction (overall 27 sequences per evaluation). Therefore, 
each session has 27 sequences that last 16 s each, overall 
432 s, plus the time needed for the observers to give their 
grades (usually under 20 min). Two sessions per day were 
asked, so that observers would not get tired from more evalu-
ations. Every time, sequences from each part were rand-
omized (only two at the beginning, used as an introduction 
to the observers of the grading system and assessment proce-
dure, always stayed at the beginning). Application also takes 
information about which of those four parts were evaluated, 

so if an observer gets two or more times the same part, only 
first evaluation of that part was taken into later calculation of 
the grades, while other evaluations were discarded (although 
being paid). Average preloading time heavily depends on 
Internet speed of the user. When starting the application, 
users have information that they will have to download up to 
2 GB, and during preloading time, sequence number is being 
shown which is currently preloading (1 to 27).

4 � Results: grade preprocessing and analysis

4.1 � Preprocessing of crowdsourced gathered 
grades

After all subjective scores were collected, we had success-
fully finished 220 stage two subjective tests (out of overall 
283 sessions that started application). Potential cheaters, as 
explained earlier, were screened a priori with the help of 
ARMs implemented in the crowdsourcing platform (five 
results—observers who did not send correct verification 
of their equipment) and in the test application itself (13 
results—marked as “potential cheater”). In total, 18 results 
were removed with recourse to the ARMs. However, some of 
the observers evaluated the same part of the 3D video con-
tents several times. In these cases, only the first successfully 
finished evaluation was used to compile the final grades. 
After that pruning step, unique evaluations were kept in the 
records, overall 139 evaluations. On average, each degraded 
video sequence was graded 34.8 times.

First, we calculated Pearson’s correlation between each 
of the 139 observation sessions and average score from all 
observers for quality, depth, and comfort. Average Pearson’s 

Fig. 2   First frame, left view, 
from each of the tested 
sequences

Fig. 3   Spatial versus temporal information: diamond—left view; cir-
cle—right view
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Fig. 4   Crowd3D second-stage page: a starting page, e.g., before preloading; b after preloading and before start of the 3D video quality assess-
ment; c after 3D video quality assessment
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correlation in this case was 0.7609 for quality, 0.5902 for 
depth, and 0.6517 for comfort grades. It can be concluded 
that highest Pearson’s correlation was obtained for quality 
scores, lower for comfort scores, and lowest for depth scores. 
This shows highest variability in the depth scores, smaller 
diversity for comfort, and smallest for quality scores. As 
reported later in the discussion, a similar trend was observed 
comparing crowdsourced and laboratory scores: higher cor-
relation is observed for quality, lower for comfort and depth 
DMOS/MOS (Difference Mean Opinion Score/Mean Opin-
ion Score) scores.

A further screening of the observers was performed fol-
lowing the procedure suggested in ITU-R BT.500-13 [1] 
to discard scores from observers who differed too much 

(original or degraded), �′
n
 is the mean score from observer n, 

and �′
n
 is the standard deviation for the scores from observer 

n (over all sequences l graded by that observer).
For each time window (16 s per video sequence), nor-

mality of the z-scores was tested using kurtosis β, over the 
span of all z-scores for that video sequence. Depending on 
the kurtosis value, each observer’s grade was compared to 
a multiple of the deviation σl from the mean value of each 
video sequence l. Finally, following recommendation ITU-R 
BT.500-13 [1], the decision of whether or not to consider 
a score from a given observer an outlier is based on two 
values, Pn and Qn, computed according to (3) and which 
basically count the number of scores that fall on the tails of 
the probability distribution of the normalized scores:

from the average value (outliers). This procedure involves 
several steps described next. As a first step, each grade 
residual (difference between reference and degraded video 
sequence grade for the same observer) was converted to a 
z-score according to the following:

In (1), znl is the z-score of observer n, for video 
sequence l, dnl is the residual score of observer n, for 
degraded video sequence l, μn is the residual mean score 
from observer n, and σn is the residual standard devia-
tion for the scores from observer n (over all degraded 
sequences l graded by that observer). This normalization 
is done to remove the effects of any differences in the use 
of the quality scale (differences in the location and range 
of values used by the observer). A similar procedure is 
used in [32]. However, DMOS results that skip this step 
were also analysed. In addition, using a similar formula, 
we computed z-scores from raw observers’ grades, to be 
able to calculate normalized MOS scores:

In (2), z′
nl

 is the z-score of observer n, for video sequence 
l, rnl is the raw score of observer n, for video sequence l 

(1)znl =
dnl − �n

�n
.

(2)z�
nl
=

rnl − ��
n

��
n

.

(3)

∀l ∈ L where L stands for number of video sequences

∀n ∈ N where N stands for number of observers

if znl ≥ z̄l + 2 ⋅ 𝜎l then Pn = Pn + 1

if znl ≤ z̄l − 2 ⋅ 𝜎l then Qn = Qn + 1

�

for 2 ≤ 𝛽 ≤ 4 (normal)

if znl ≥ z̄l +
√
20 ⋅ 𝜎l then Pn = Pn + 1

if znl ≤ z̄l −
√
20 ⋅ 𝜎l then Qn = Qn + 1

�

for 𝛽 ∉ [2, 4] (not normal).

The Pn and Qn values represent the number of outlier 
scores for observer n. These Pn and Qn values are com-
puted for every observer and if any of them is larger than 
the respective predetermined threshold Pthresh or Qthresh of 
tested (degraded) video sequences, that observer’s data are 
discarded. For MOS outlier scores calculation, in (3), the 
znl from (1) has to be replaced with z′

nl
 from (2). We have 

defined four different cases with different outlier thresholds, 
listed next as cases 1. –4.:

Case 1. DMOS/MOS scores, Pthresh = Qthresh = 2 with 
z-score calculation;
Case 2. DMOS/MOS scores, Pthresh = Qthresh = 3 with 
z-score calculation;
Case 3. DMOS/MOS scores, Pthresh = Qthresh = 3 without 
z-score calculation;
Case 4. DMOS/MOS scores, Pthresh = Qthresh = 4 with 
z-score calculation.

Afterwards, results for every observer were rescaled 
to the 0–100 range, according to (4) where max(z) and 
min(z) represent maximum and minimum z-scores over 
all observers and all video sequences and dmosn,l/mosn,l 
represents the rescaled grade of viewer n and sequence l:
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At the end, an average DMOS(l)/MOS(l) grade was 
calculated for each of the distorted video sequences as the 
arithmetic mean of all grades for that sequence. In every 
evaluation session, the observer graded videos covering 
all types of degradations, so no degradation specific bias 
occurred. Consequently, there was no need for further rea-
lignment of the DMOS/MOS scores.

Figure 5 shows different factors from the crowdsourced 
test environment that can influence the final grades: age, 
gender, device type (TV, monitor, and laptop) and glasses 
type (active or passive). To understand the impact of some 
of these factors on the scores, an analysis presented later 
was done according to observer gender—males, observ-
ers who used TV sets, observers with ages from 20 to 
35 years, and observers who used active glasses display. 
Due to lower number of observers in other groups—female 
observers, observers who used monitor, laptop, etc., 
results are not shown, because they could be unreliable. 
For that analysis, we always used DMOS/MOS scores with 
Pthresh = Qthresh = 3, with z-score calculation, subset of case 

(4)
dmosn,l =

100

max(z) −min(z)
⋅

(
zn,l −min(z)

)

mosn,l =
100

max(z�) −min(z�)
⋅

((
z�
n,l
−min(z�)

))
.

2. Therefore, additionally, we tested another four different 
cases (cases 5. –8.):

Case 5. DMOS/MOS scores, Pthresh = Qthresh = 3 with 
z-score calculation—males only;
Case 6. DMOS/MOS scores, Pthresh = Qthresh = 3 with 
z-score calculation—TV sets only;
Case 7. DMOS/MOS scores, Pthresh = Qthresh = 3 with 
z-score calculation—20–35 year observers only;
Case 8. DMOS/MOS scores, Pthresh = Qthresh = 3 with 
z-score calculation—active glasses display.

Finally, we also checked influence of previously discussed 
ARMs on the final DMOS/MOS score correlation by defining 
two new cases (cases 9. –10.) which include scores rejected 
when the ARM are enforced, and proceeding as in the previ-
ous cases analyses. The new cases are defined as follows: 

Case 9. DMOS/MOS scores, Pthresh = Qthresh = 3 with 
z-score calculation, together with 13 potential cheater 
sessions and 5 session who did not pass final verification 
test (12 “false” sessions added overall—because some are 
overlapping and some were also double sessions), which 
gives 151 sessions overall;
Case 10. DMOS/MOS scores, Pthresh = Qthresh = 3 with 
z-score calculation, together with false sessions described 

Fig. 5   Different factors from 
crowdsourced test: a gender, b 
device type, c age, and d active/
passive devices
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earlier and double sessions, added 81 sessions, which 
gives 220 sessions overall;
The number of discarded observers for quality, depth, and 
comfort scores, and the total number of discarded observ-
ers for the previously described cases 1–10 are shown in 
Table 1. It can be seen that z-score calculation rearranges 
score spans from different observers into more similar 
range, resulting in less outliers: the Pthresh = Qthresh = 3, 
with z-score calculation case has less number of dis-
carded observers than the case for Pthresh = Qthresh = 3, 
without z-score calculation. In addition, as expected, with 
higher values for the thresholds Pthresh and Qthresh, the total 
number of discarded observers is smaller.

4.2 � Comparative assessment of laboratory 
and crowd‑based grades

An important objective of this work is understanding if the 
crowdsource-based quality evaluation results are similar to 
results of studies performed in more controlled conditions 
in a laboratory. To do this analysis, we started by applying a 
nonlinear regression function to the two sets of data, to com-
pensate for the fact that the laboratory DMOS/MOS results 

were obtained using more video sequences than the crowd-
source study and so the two sets of DMOS/MOS values 
(laboratory and crowdsource) did not have the same span. 
The laboratory DMOS/MOS scores were preprocessed by 
removing all raw observers’ evaluations that did not grade 
sequences also used in the crowdsourced study. Then, the 
procedure used to compute the DMOS/MOS values in the 
crowdsourced case [using (1), (2), (3), and (4)] was applied 
to the filtered laboratory scores, with Pthresh = Qthresh = 3 and 
z-score calculation, i.e., case 2 from above. Choosing only 
four sequence types, a priori is possible, because, in labo-
ratory evaluations, observers watched either four sequence 
types (original and degraded) present in crowdsourced 
experiment, or the other four sequence types and no observer 
was presented a mix of these two 4 type sets. In the labo-
ratory evaluations, 15–20 grades per each degraded video 
sequence were collected (after one outlier removal) for both 
MOS and DMOS scores.

Then, three different possibilities were considered to 
obtain an analytical description of the data, no fit, linear, and 
cubic polynomial fit (best fit in a least-squares sense), like in 
[14]. These fit alternatives formulations are as listed in (5):

Table 1   Number of discarded observers for different values Pthresh and Qthresh

Discarded observers for Overall number of 
discarded observers

Quality Depth Comfort

DMOS scores
 1. Crowdsourced test, Pthresh = Qthresh = 2, with z-scores 17 13 17 34
 2. Crowdsourced test, Pthresh = Qthresh = 3, with z-scores 1 2 1 4
 3. Crowdsourced test, Pthresh = Qthresh = 3, skip z-scores 7 12 11 21
 4. Crowdsourced test, Pthresh = Qthresh = 4, with z-scores 0 0 0 0
 5. Males only test, Pthresh = Qthresh = 3, with z-scores 2 0 0 2
 6. TV sets only, Pthresh = Qthresh = 3, with z-scores 2 1 2 5
 7. 20–35 years observers only, Pthresh = Qthresh = 3, with z-scores 2 0 0 2
 8. Active glasses display, Pthresh = Qthresh = 3, with z-scores 3 1 1 5
 9. Crowdsourced test, Pthresh = Qthresh = 3, with z-scores, with false results 3 0 0 3
 10. Crowdsourced test, Pthresh = Qthresh = 3, with z-scores, with added results 

from false and double results
2 3 2 6

MOS scores
 1. Crowdsourced test, Pthresh = Qthresh = 2, with z-scores 19 18 14 39
 2. Crowdsourced test, Pthresh = Qthresh = 3, with z-scores 3 3 5 10
 3. Crowdsourced test, Pthresh = Qthresh = 3, skip z-scores 8 15 11 25
 4. Crowdsourced test, Pthresh = Qthresh = 4, with z-scores 1 0 1 2
 5. Males only test, Pthresh = Qthresh = 3, with z-scores 2 1 2 5
 6. TV sets only, Pthresh = Qthresh = 3, with z-scores 2 1 2 5
 7. 20–35 years observers only, Pthresh = Qthresh = 3, with z-scores 3 0 2 4
 8. Active glasses display, Pthresh = Qthresh = 3, with z-scores 5 3 2 8
 9. Crowdsourced test, Pthresh = Qthresh = 3, with z-scores, with false results 5 3 7 12
 10. Crowdsourced test, Pthresh = Qthresh = 3, with z-scores, with added results 

from false and double results
9 3 5 16
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Fig. 6   Crowdsourced and laboratory results comparison, together with 95% CI in related direction, for: a DMOS quality, b MOS quality, c 
DMOS depth, d MOS depth, e DMOS comfort, and f MOS comfort



	 E. Dumic et al.

1 3

Figure 6 shows the linear and quadratic fitted functions 
for the DMOS/MOS data for the three quality dimen-
sions, “Quality”, “Depth”, and “Comfort”, when using 
Pthresh = Qthresh = 3, and z-score calculation (previously 
described case 2). Table 2 lists the values of the parameters 
of the fitted models.

(5)

QNo - fit(z) = z

Qlinear(z) = b1 ⋅ z + b2

Qcubic(z) = b1 ⋅ z
3 + b2 ⋅ z

2 + b3 ⋅ z + b4.

The DMOS/MOS scores for the original sequences are 
shown in Table 3, together with 95% CI. Because DMOS 
scores are the same for all original sequences, they were 
not used for later comparison with laboratory test in DMOS 
case comparison (as different number of original sequences 
would change correlation, RMSE, etc.). In the case of MOS 
scores, the grades for the original video sequences have been 
included in the correlation calculations.

The DMOS/MOS scores for quality, depth, and comfort 
were compared with DMOS/MOS scores from laboratory 
DMOS/MOS scores in 3DVCL@FER using Pearson’s and 

Table 2   Parameters used to fit between crowdsourced and laboratory DMOS/MOS scores and 95% confidence interval

Score type b1 (95% CI) b2 (95% CI) b3 (95% CI) b4 (95% CI)

DMOS scores, linear fit
 Quality 1.1655 (± 0.0774) − 4.9600 (± 4.067) – –
 Depth 1.0589 (± 0.1070) − 4.0371 (± 4.8686) – –
 Comfort 0.8246 (± 0.0775) 11.0851 (± 3.5498) – –

DMOS scores, cubic fit
 Quality 0.0003032 (± 0.0006454) − 0.0527 (± 0.1053) 4.1275 (± 5.5904) − 58.4010 (± 96.4503)
 Depth 0.0012402 (± 0.0012203) − 0.1676 (± 0.1771) 8.4152 (± 8.4095) − 108.8645 (± 130.6183)
 Comfort 0.0002776 (± 0.0007114) − 0.0406 (± 0.0983) 2.7321 (± 4.3999) − 17.3842 (± 63.3112)

MOS scores, linear fit
 Quality 1.0549 (± 0.0577) − 14.7542 (± 3.3281) – –
 Depth 1.1159 (± 0.0847) − 14.1282 (± 5.1510) – –
 Comfort 0.8745 (± 0.0738) 3.7410 (± 4.2335) – –

MOS scores, cubic fit
 Quality 0.0003274 (± 0.0004323) − 0.0449 (± 0.0701) 2.9344 (± 3.6906) − 38.2622 (± 62.7899)
 Depth 0.0012677 (± 0.0007044) − 0.2179 (± 0.1212) 13.3661 (± 6.8537) − 238.9810 (± 127.3323)
 Comfort 0.0006516 (± 0.0007730) − 0.1067 (± 0.1312) 6.5579 (± 7.2953) − 94.6653 (± 132.8156)

Table 3   DMOS/MOS scores for original sequences

Score type Original sequence “Basketball 
training”

Original sequence “Hall” Original sequence “News 
report”

Original sequence “Soccer”

Crowdsourced 
(95% CI)

Laboratory
(95% CI)

Crowdsourced 
(95% CI)

Laboratory
(95% CI)

Crowdsourced 
(95% CI)

Laboratory
(95% CI)

Crowdsourced 
(95% CI)

Laboratory
(95% CI)

DMOS scores
 Quality 36.9556 

(± 0.8610)
37.4653 

(± 1.3208)
36.9556 

(± 0.8610)
37.4653 

(± 1.3208)
36.9556 

(± 0.8610)
37.4653 

(± 1.3208)
36.9556 

(± 0.8610)
37.4653 

(± 1.3208)
 Depth 34.6221 

(± 0.8287)
31.9060 

(± 1.1310)
34.6221 

(± 0.8287)
31.9060 

(± 1.1310)
34.6221 

(± 0.8287)
31.9060 

(± 1.1310)
34.6221 

(± 0.8287)
31.9060 

(± 1.1310)
 Comfort 30.1558 

(± 1.0025)
35.0346 

(± 1.3394)
30.1558 

(± 1.0025)
35.0346 

(± 1.3394)
30.1558 

(± 1.0025)
35.0346 

(± 1.3394)
30.1558 

(± 1.0025)
35.0346 

(± 1.3394)
MOS scores
 Quality 67.8601 

(± 1.3264)
56.8852 

(± 2.028)
71.5962 

(± 1.1587)
63.1418 

(± 2.0135)
69.8443 

(± 1.1304)
57.5043 

(± 1.8844)
73.6031 

(± 1.2279)
66.4322 

(± 1.8431)
 Depth 68.4990 

(± 1.3786)
62.8564 

(± 2.3292)
70.6167 

(± 1.2479)
66.2525 

(± 2.0188)
68.9717 

(± 1.2267)
60.3801 

(± 2.3382)
73.4790 

(± 1.3380)
68.9923 

(± 2.4163)
 Comfort 66.7045 

(± 1.5704)
61.2939 

(± 2.3092)
71.8040 

(± 1.4988)
69.7488 

(± 1.9833)
66.7560 

(± 1.6014)
61.6603 

(± 1.9902)
74.9985 

(± 1.2946)
71.0297 

(± 1.5970)
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Spearman’s correlation, RMSE (Root Mean Square, after 
nonlinear regression) and OR (Outlier Ratio, after nonlin-
ear regression). To measure the agreement between the two 
sets of DMOS/MOS values, two figures of merit were used; 
Root-Mean-Square Error (RMSE) and Outlier Ratio (OR). 
RMSE was calculated according to (6):

where N represents number of tested video sequences (in 
our case, 84 degraded video sequences for DMOS or 88 for 
MOS scores), fit((D)MOScrowd(i)) is the fitted (D)MOS score 
of the ith video sequence in crowdsourced test [using (5)] 
and (D)MOSlab(i) is (D)MOS laboratory obtained score of 
ith video sequence.

The other indicator, OR, was calculated as the number of 
video sequences that fall outside the 95% confidence interval 
calculated from DMOS/MOS laboratory tests where the con-
fidence interval is computed by (7):

where t(M) is the critical value of Student’s t distribution 
with M-1 degrees of freedom (M is number of times that the 
same video sequence has been graded) for 95% probability 
and std(scores) is the standard deviation of the grades of 
the same video sequence. A score was considered to be an 
outlier if (8) held:

and OR was calculated as number of outliers divided by the 
number of tested video sequences (in our case, 84 degraded 
video sequences for DMOS or 88 for MOS scores).

Separate analysis of the crowd-based grades was per-
formed taking into consideration the previously described 
cases 1–10. Pearson’s and Spearman’s inter-correlation 
(without any fitting) between DMOS/MOS scores for qual-
ity, depth, and comfort, for results from laboratory scores, 
crowdsourced (with different Pthresh and Qthresh values), 
males only, TV sets only, 20–35 years observers only, active 
glasses display, results with false observers’ scores, results 
with false and double observers’ scores, are presented in 
Table 4.

The DMOS and MOS scores for quality, depth, and 
comfort collected in all previously defined evaluations/
groups were compared with DMOS and MOS scores from 
the laboratory evaluations using Pearson’s and Spearman’s 
correlation (together with confidence interval), RMSE 

(6)

RMSE =

√√√
√ 1

N

N∑

i=1

(fit((D)MOScrowd(i)) − (D)MOSlab(i))
2,

(7)CI = t(M − 1) ⋅
std(scores)

√
M

,

(8)

||fit((D)MOScrowd(i)) − (D)MOSlab(i)
|| > CIcrowd(i) + CIlab(i)

(Root-Mean-Square Error), and OR (Outlier Ratio) and 
presented in Tables 5 and 6, respectively. The best results 
are highlighted in bold. In the case of MOS calculation, we 
had overall 88 MOS scores, 4 more than DMOS, because 
the original video sequences were also taken into account. 
Confidence intervals for Pearson’s and Spearman’s correla-
tions have been calculated using Fisher’s transform (9). It 
has to be noted that overlapping CIs do not necessarily mean 
that correlations are statistically similar:

4.3 � ANOVA statistical test and error classification

To determine whether the difference between two sets of 
scores corresponding to the same stereo pair evaluated 
in crowdsourced test and laboratory test is statistically 
significant, a multiple comparison test based on ANOVA 
was performed at a 5% significance level on the scores for 
quality, depth, and comfort (using linear and cubic regres-
sion of scores from crowdsourced test, Pthresh = Qthresh = 3, 
with z-score calculation, previously described case 2). 
The results are presented in Table 7. Results show that 
the number of video sequences with unequal mean is the 
same for DMOS quality, depth, and comfort scores, (for 
case 2, Pthresh = Qthresh = 3, with z-scores, cubic fit). For 
MOS scores, depth and comfort scores have lower number 
of video sequences with unequal mean, comparing with 
quality MOS scores (for case 2, Pthresh = Qthresh = 3, with 
z-scores, cubic fit).

In recommendation ITU-T J.149 [33], it is suggested 
computing the classification errors and use them to evalu-
ate the performance of an objective metric. In this context, 
a classification error is made when the objective metric 
and subjective test lead to different conclusions (regard-
ing statistical difference of the scores) on a pair of video 
sequences, i and j. In the work [34], this methodology was 
extended to the case of comparison of a pair of subjec-
tive tests of 3D video sequences, i and j, corresponding to 
quality grades (D)MOS(i) and (D)MOS(j), of 3D content 
on different monitors in subjective laboratory tests. Simi-
larly, we used those classification errors to compare the 
laboratory evaluations with the crowdsourced evaluations. 
DMOS/MOS scores from video sequences i and j were 

(9)

lower_bound = tanh

�

a tanh (�) − zCI ⋅
1

√
Nvideosequences − 3

�

upper_bound = tanh

�

a tanh (�) + zCI ⋅
1

√
Nvideosequences − 3

�

�-Pearson’s or Spearman’s correlation

zCI = 1.9600 for CI = 95%.



	 E. Dumic et al.

1 3

Table 4   Pearson’s and Spearman’s inter-correlation between DMOS/MOS scores for quality, depth, and comfort

Short label for 
each case

Pearson’s correlation between scores for Spearman’s correlation between scores for

Quality and 
depth

Depth and 
comfort

Comfort 
and qual-
ity

Quality and 
depth

Depth and 
comfort

Comfort 
and quality

DMOS scores
 0. Laboratory test, 

Pthresh = Qthresh = 3, 
with z-scores

0. Lab-DMOS 0.6317 0.5006 0.6596 0.6109 0.5685 0.7214

 1. Crowd-
sourced test, 
Pthresh = Qthresh = 2, 
with z-scores

1. PQ2 0.8320 0.7589 0.8194 0.8039 0.7901 0.8198

 2. Crowd-
sourced test, 
Pthresh = Qthresh = 3, 
with z-scores

2. PQ3 0.8355 0.7577 0.8377 0.8100 0.7810 0.8357

 3. Crowd-
sourced test, 
Pthresh = Qthresh = 3, 
skip z-scores

3. PQZ3 0.8318 0.7231 0.8186 0.8142 0.7543 0.8345

 4. Crowd-
sourced test, 
Pthresh = Qthresh = 4, 
with z-scores

4. PQ4 0.8402 0.7564 0.8376 0.8120 0.7779 0.8392

 5. Males only test, 
Pthresh = Qthresh = 3, 
with z-scores

5. Males 0.8186 0.6850 0.7755 0.7898 0.7235 0.7959

 6. TV sets only, 
Pthresh = Qthresh = 3, 
with z-scores

6. TV sets 0.8097 0.7162 0.8076 0.7858 0.7484 0.8003

 7. 20–35 years 
observers only, 
Pthresh = Qthresh = 3, 
with z-scores

7. 20–35 y 0.8293 0.7192 0.7654 0.8093 0.7423 0.7446

 8. Active glasses 
display, 
Pthresh = Qthresh = 3, 
with z-scores

8. AGD 0.8353 0.7714 0.8694 0.8210 0.7936 0.8650

 9. Crowd-
sourced test, 
Pthresh = Qthresh = 3, 
with z-scores, with 
false results

9. ARM1 0.8460 0.7650 0.8402 0.8167 0.7824 0.8452

 10. Crowd-
sourced test, 
Pthresh = Qthresh = 3, 
with z-scores, with 
added results from 
false and double 
results

10. ARM2 0.8963 0.8095 0.8336 0.8584 0.8267 0.8602

MOS scores
 0. Laboratory test, 

Pthresh = Qthresh = 3, 
with z-scores

0. Lab-MOS 0.6442 0.5480 0.6735 0.6228 0.6105 0.7092

 1. Crowd-
sourced test, 
Pthresh = Qthresh = 2, 
with z-scores

1. PQ2-M 0.8163 0.7736 0.8480 0.8125 0.8038 0.8511
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compared using (10), analogously to (8) where we used 
same CI as defined in (7):

Borrowing the notation introduced in [34], three types 
of classification errors are defined:

(a)	 False Tie: the least offensive error. It happens when the 
laboratory evaluation says that DMOS/MOS scores of 

(10)

|
|fit((D)MOScrowd(i)) − fit((D)MOScrowd(j))

|
| > CIcrowd(i) + CIcrowd(j)

&&

||(D)MOScrowdlab(i) − (D)MOSlab(j)
|| > CIlab(i) + CIlab(j),

sequences i and j are different (their CIs do not over-
lap), whereas the evaluation in crowdsourced test says 
that they are identical (their CIs overlap),

(b)	 False Differentiation: it happens when the evalua-
tion in laboratory test says that DMOS/MOS scores 
of sequences i and j are identical (their CIs overlap), 
whereas the evaluation in crowdsourced test says that 
they are different (their CIs do not overlap),

(c)	 False Ranking: the worst error. It happens when the 
evaluation in laboratory test says that DMOS/MOS 
scores of the sequences i (j) are statistically better 
(according to their CIs) than j (i), whereas the evalua-
tion in crowdsourced test says the opposite.

Table 4   (continued)

Short label for 
each case

Pearson’s correlation between scores for Spearman’s correlation between scores for

Quality and 
depth

Depth and 
comfort

Comfort 
and qual-
ity

Quality and 
depth

Depth and 
comfort

Comfort 
and quality

 2. Crowd-
sourced test, 
Pthresh = Qthresh = 3, 
with z-scores

2. PQ3-M 0.8305 0.7988 0.8607 0.8205 0.8251 0.8640

 3. Crowd-
sourced test, 
Pthresh = Qthresh = 3, 
skip z-scores

3.PQZ3-M 0.7954 0.7701 0.8367 0.7821 0.7997 0.8490

 4. Crowd-
sourced test, 
Pthresh = Qthresh = 4, 
with z-scores

4. PQ4-M 0.8374 0.7954 0.8503 0.8263 0.8284 0.8530

 5. Males only test, 
Pthresh = Qthresh = 3, 
with z-scores

5. Males-M 0.8065 0.7380 0.7899 0.7783 0.7753 0.8239

 6. TV sets only, 
Pthresh = Qthresh = 3, 
with z-scores

6. TVsets-M 0.8099 0.7638 0.8339 0.8002 0.7833 0.8280

 7. 20–35 years 
observers only, 
Pthresh = Qthresh = 3, 
with z-scores

7. 20–35y-M 0.8352 0.7570 0.7809 0.8319 0.7904 0.7844

 8. Active glasses 
display, 
Pthresh = Qthresh = 3, 
with z-scores

8. AGD-M 0.8312 0.8033 0.8728 0.8188 0.8161 0.8730

 9. Crowd-
sourced test, 
Pthresh = Qthresh = 3, 
with z-scores, with 
false results

9. ARM1-M 0.8418 0.7997 0.8598 0.8332 0.8346 0.8593

 10. Crowd-
sourced test, 
Pthresh = Qthresh = 3, 
with z-scores, with 
added results from 
false and double 
results

10. ARM2-M 0.8910 0.8324 0.8484 0.8683 0.8633 0.8753
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The error classification rates for DMOS/MOS quality, 
depth, and comfort scores are presented in Table 8. We 
used linear and cubic regression of scores from crowd-
sourced test, Pthresh = Qthresh = 3, with z-score calculation, 
previously described case 2 (results for linear and cubic 
regression are same). In DMOS case, we had 84 and in 
MOS case, and we had 88 video sequences.

5 � Discussion

From the results in Sect. 4.2, it can be concluded that, 
using the proposed framework of the Crowd3D method, it 
is possible to obtain similar DMOS/MOS quality scores as 
in laboratory experiments, provided that all ARMs imple-
mented and explained earlier are used. For example, for 
case 2—Pthresh = Qthresh = 3, with z-score calculation, cubic 
fit, Pearson’s and Spearman’s correlations between crowd-
sourced and laboratory tests are about 0.94 for DMOS and 
0.96 for MOS scores. However, correlation is somewhat 
lower for DMOS/MOS depths and comfort scores (for case 
2, it is 0.89/0.93 and 0.89/0.91 for DMOS/MOS depth and 
comfort scores). Lower scores for comfort and depth can be 
due to the several reasons, which are very difficult to control 
in crowdsourced tests: different illumination conditions, dif-
ferent 3D monitor type, and different monitor settings. In 
addition, depth and comfort scores, as added grades in 3D 
subjective experiments, may require the use of different sub-
jective assessment approaches (in our work, we have used 
ACR-HR). Possibly, observers may be more uncertain when 
evaluating depth and comfort, than generic video quality as 
those two quality dimensions are harder to define.

When comparing DMOS/MOS scores between them-
selves, c.f. Table 4, it can be noticed that, in the crowd-
sourced quality evaluations, inter-correlation between dif-
ferent DMOS scores is higher, comparing with laboratory 

results. This could be because depth and comfort scores were 
not easily understandable to the observers as quality scores, 
which may have made quality, depth, and comfort scores 
more similar. Possibly, this could then influence negatively 
the grading of the contents in the depth and comfort dimen-
sions, resulting in unreliable DMOS scores for these two 
quality indicators. However, as was the case in the labora-
tory test, also for the crowdsourced data, DMOS scores for 
quality and comfort have the highest correlation. In [35], 
authors have presented a comparison between “Visual Qual-
ity”, “Visual Discomfort”, and “Sense of Presence” gradings 
(and two viewing distances) obtained using the NAMAS1-
COSPAD data set [22]. For visual quality and sense of pres-
ence, they used ACR scale, while, for visual discomfort, 
they used “Degradation Category Rating” scale [31]. They 
concluded that the different scales which they used have 
high correlation: Pearson’s correlation of 0.9 for visual 
quality—visual discomfort and 0.93 for visual quality—
sense of presence grade pairs. This might show that general 
video quality scale is sufficient for evaluating side-by-side 
video experience, with the characteristics similar to that of 
NAMAS1-COSPAD data set (mainly coding and spatial 
resolution reduction distortions). However, in our subjective 
experiment, we had more different distortion types (some of 
which are specific for 3D distortion types), so those scales 
should represent more different grades.

When comparing error classification for DMOS/MOS 
quality, depth, and comfort scores, Table 8, again, it can be 
seen that highest correct classification rate was obtained for 
DMOS/MOS quality scores (between laboratory and crowd-
sourced tests), lower in the case of DMOS/MOS depth and 
comfort scores.

Next, we compare our results with some other similar 
performing 3D subjective evaluation tests. In [14] (between 
crowd-based and lab-based test), compared to our results 
on the agreement between laboratory and crowdsourced 

Table 7   ANOVA statistical test and error classification for DMOS/MOS quality, depth,and comfort scores

Overall num-
ber of video 
sequences

Number of video 
sequences with unequal 
mean for

Percentage of video sequences with 
equal mean

Quality Depth Comfort Quality (%) Depth (%) Comfort (%)

DMOS scores
 Crowdsourced test, Pthresh = Qthresh = 3, with z-scores, 

linear fit
84 4 5 7 95.24 94.05 91.67

 Crowdsourced test, Pthresh = Qthresh = 3, with z-scores, 
cubic fit

84 4 4 4 95.24 95.24 95.24

MOS scores
 Crowdsourced test, Pthresh = Qthresh = 3, with z-scores, 

linear fit
88 9 3 9 89.77 96.59 89.77

 Crowdsourced test, Pthresh = Qthresh = 3, with z-scores, 
cubic fit

88 6 3 3 93.18 96.59 96.59
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originated DMOS grades, that paper reports similar values 
for OR, only ANOVA test in [14] calculated 100% of cor-
rect estimation. Concerning error classification, we also 
obtained similar results for percentage of correct classifica-
tion for quality scores (about 78% for DMOS and 82% for 
MOS). Spearman’s correlation between crowd-based and 
lab-based evaluations in [14] was above 0.97. Similar con-
clusions can be drawn from [20] (three different laboratories; 
similar setup for tests as in [14]), only OR results from [20] 
were worse than in our comparison. ANOVA test in this 
case estimated similar results (88.89–98.61% of correct esti-
mation, depending on laboratory). Spearman’s correlation 
between laboratories in [20] was 0.9340–0.9399. In [21] (3 
different laboratories; authors tested ten degradation types 
from NAMAS1-COSPAD data set), Spearman’s correlation 
between laboratories was 0.9634–0.9811.

When comparing number of grades per sequence with 
[8], it should be noted that 2D image quality assessment 
can be done more easily than 3D video quality assessment, 
especially for crowdsourced tests.

When comparing TV sets only and inter-correlation 
between DMOS/MOS grades, Table 4, it can be seen that 
better differentiation between quality, depth, and com-
fort scores were obtained than crowdsourced test with 
Pthresh = Qthresh = 3. In addition, from Table 5, best correla-
tion for Pearson’s and Spearman’s quality DMOS, best cor-
relation for Spearman’s comfort DMOS, nearly the best for 
Pearson’s comfort DMOS (slightly better is case 7. —20–35 
y-cubic fit), lowest RMSE for quality DMOS, and nearly the 
lowest for comfort DMOS (slightly better is case 7. —20–35 
y-cubic fit) were also obtained using only grades from TV 
sets (better than all other tested groups). Correlation for 
depth DMOS grades and RMSE was better in overall results 
(case 1, with Pthresh = Qthresh = 2, with z-score calculation). 
For MOS scores, Table 6, TV sets have highest correlation 
and lowest RMSE for comfort scores, and second high-
est correlation and second lowest RMSE for depth scores 
(first is case 1, Pthresh = Qthresh = 2, with z-score calculation). 
For MOS quality scores, tested case 4 (Pthresh = Qthresh = 4, 
with z-score calculation) has the best correlation and low-
est RMSE. This may lead to the conclusion that, in crowd-
sourced evaluations, it is better to use TV sets only; possibly, 
general 3D quality and comfort grades on monitors and lap-
tops are more diverse than on TV sets only, comparing with 
laboratory evaluation (and depth and comfort mixed with 
quality grades; comparing Table 4). Another reason may be 
because laboratory evaluation was also made only on TV 
set. Similar conclusion can be seen in ITU P.914 [3], where 
comparison between different TV sets usually has higher 
correlation than between TV and laptop.

Other factors, such as age, gender, and active glasses 
devices, did not have important influence, when com-
paring with overall results. Although somewhat better Ta
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differentiation between quality, depth, and comfort scores 
was obtained (Table 4), still those subset of results have 
somewhat lower or similar correlation with laboratory tests, 
when comparing with overall results for both DMOS/MOS 
scores (e.g., with case 2). Lower correlation in some cases 
can be also due to the lower number of observers, when test-
ing those specific factors (Tables 5, 6, min and max number 
of observers).

When comparing overall results, with and without z-score 
calculation, it can be seen that higher correlation with labo-
ratory test is obtained using z-scores. However, from results 
without z-score calculation, it can be seen that most observ-
ers were removed due being outliers from mean for depth 
grades (12 or 15, respectively, for DMOS/MOS), then for 
comfort grades (11 or 12 respectively for DMOS/MOS), 
and lowest number for quality grades (7 or 8 respectively 
for DMOS/MOS). This may be due to the observers having 
highest uncertainty in giving depth grades.

From Table 8, it can be seen that false differentiation 
error is much higher than the false tie error for video quality, 
depth quality, and visual comfort DMOS/MOS grades. From 
definition, this means that there exist more cases where labo-
ratory scores are identical, whereas, in crowdsourced test, 
those cases are different. This can be explained due to the 
larger CI in laboratory test, because, in laboratory test, there 
were, on average, 18 grades per video sequence, while, in 
crowdsourced test on average, each degraded video sequence 
was graded about 34.8 times.

When comparing IP addresses (that application monitored 
and saved) with countries that observers told they live, gener-
ally answers are correct. For 6 observers, wrong IP addresses 
could be due to proxy servers; removing those observers did 
not improve Pearson’s and Spearman’s correlations.

When comparing cases 9 and 10 (ARMs that have been 
used are removed: false observers in case 9 and false and 
double in case 10), correlation is similar in case 9 or some-
what smaller comparing to, e.g., case 2 probably because 
only 12 sessions were added. Correlation did not signifi-
cantly drop even in case 10 (false and double evaluations—
giving 220 evaluations, comparing with 139 valid). This 
may be explained because initially, we used prescreening 
of all observers (phase 1), which probably removed many 
false observers anyway (and those scores we cannot com-
pare as we used five video sequences in phase 1—not the 
same as in phase 2). In the case, all 283 evaluations are 
considered (only MOS scores can be calculated in this case, 
because grades from original video sequences are gener-
ally not reported), correlation results are similar like case 
10, because usually only a few grades (or even none) have 
been acquired from those unfinished evaluations. Another 
reason might also be, as stated earlier, lower number of 3D 
equipment among general population, which makes cheaters 
probably more reluctant to participate in the study.

6 � Conclusion

This paper proposes a new method for crowdsourced subjec-
tive 3D video quality assessment—Crowd3D. A comparison 
with the results obtained in controlled laboratory-based stud-
ies is also given.

It can be concluded that, using the proposed framework 
of the Crowd3D method, it is possible to obtain grades with 
high correlation with laboratory collected grades for quality 
scores, but somewhat lower correlation for depth and comfort 
scores. Reasons for that could be different: possibly too low 
number of the observers (especially for depth and comfort 
scores), depth and comfort scores not easily understandable 
to the observers as quality scores, and finally test equipment 
and test conditions which may have a stronger effect on depth 
and comfort grades, than on quality grades. Although the pro-
posed crowdsource application uses several mechanisms to 
check and improve the reliability of the results, the influence 
of external factors, such as monitor type, illumination qual-
ity, and its colour temperature, cannot be removed entirely. 
Further research may be needed to fully understand the new 
quality dimensions associated with 3D video and respective 
scores (depth and comfort), using similar equipment in dif-
ferent conditions in both laboratory and crowdsourced envi-
ronments, using more observers and maybe changing the 
methodology to be used in 3D video subjective tests (double 
stimulus instead of single stimulus, maybe even using dif-
ferent description of those additional scores, etc.). Future 
3D crowdsourced evaluations could also include approxi-
mate information about distance from the screen, as it could 
give information, together with screen size, about whether is 
screen or some of its part outside the zone of visual comfort, 
and its influence on subjective grades.

As an additional contribution to this research area, the 
video sequences used in this work and related DMOS/MOS 
scores for quality, depth, and comfort (using case 2, DMOS/
MOS scores, Pthresh = Qthresh = 3 with z-score calculation) 
are made publicly available. The whole data set can be 
found at repository [36] and includes the compressed video 
sequences together with the collected grades information 
and Crowd3D application source code.
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